Внутренняя энергия и энтальпия

Внутренняя энергия и энтальпия

Свойства веществ и систем характеризуется параметрами. В термодинамике, наряду с известными параметрами (масса, объем, давление, температура, теплоемкость и т.д.), используются особые (термодинамические) параметры: внутренняя энергия, энтальпия, энтропия, энергия Гиббса. Эти параметры называются функциями состояния системы, поскольку они зависят только от её начального и конечного состояния и не зависят от пути перехода системы из начального состояния в конечное.

Внутренней энергией (U) называется находящаяся в веществе или системе в скрытом виде энергия, которая включает: внутриядерную энергию, энергию движения электронов в атомах, энергию химических связей между атомами, энергию внутримолекулярных колебаний атомов и атомных групп, энергию поступательного и вращательного движения молекул, т.е. все виды энергии, кроме кинетической и потенциальной энергии системы в целом.

Абсолютную величину внутренней энергии определить невозможно, но в этом нет необходимости, т.к. в практической деятельности важно знать изменение внутренней энергии (DU) при переходе систем из одного состояния в другое.

Энтальпией(H) называется сумма внутренней энергии и произведения давления на объем:

H = U + p·V

Абсолютная величина энтальпии, как и внутренней энергии, не может быть определена. В практических расчетах пользуются изменением этой величины:

DH = DU + p·DV

Внутренняя энергия и энтальпия связаны с тепловым эффектом реакции (Q). Эта взаимосвязь вытекает из первого закона термодинамики, который является законом сохранения энергии в применении к тепловым явлениям. Первый закон имеет несколько различныхформулировок, наиболее близкое отношение к химии имеет следующая: количество теплоты, полученное системой, равно сумме увеличения ее внутренней энергии и произведенной ею работы:

Q = DU + A = DU + p·DV

В изохорных реакциях объем не изменяется, следовательно DV = 0 и Qv = DU, т.е. тепловой эффект изохорного процесса равен изменению внутренней энергии и, наоборот, изменение внутренней энергии численно равно тепловому эффекту изохорного процесса.

В изобарных реакциях p = const, a DV ¹ 0, следовательно:

Qp = DU + p·DV = (U2 – U1) + p·(V2 – V1)

Проведем перестановки:

Qp = (U2 + p·V2) – (U1 + p·V1) = H2 – H1 = DH

Таким образом тепловой эффект изобарного процесса равен изменению энтальпии:

Qp = DH

Большинство химических реакций является изобарными, поэтому тепловой эффект химических реакций обычно отождествляется с её энтальпией. Для экзотермических процессов энтальпия имеет отрицательный, а для эндотермических – положительный, т.е. энтальпии реакции знак присваивается с позиций «внутреннего наблюдателя». Соотношение обозначений и знаков термохимии и химической термодинамике таково:

123456

Механизм образования связи

Ковалентная связь может быть образована путем обобществления электронов двух нейтральных атомов (обменный, или равноценный механизм образования связи). Например, для связи Н−Н:

Н· + ·Н → Н−Н или Н : Н

20. Донорно-акцепторный механизм образования ковалентной связи. Структура и свойства комплексных соединений.

Донорно-акцепторный механизм образования ковалентной связи — это способ образования ковалентной связи между двумя атомами или группой атомов, осуществляемый за счет неподеленной пары электронов атома-донора и свободной орбитали атома-акцептора.

Донор — элемент, имеющий свободную пару электронов.

Акцептор имеет пустую орбиталь. По этому принципу образован NH4 (аммоний)

Комплексные соединения — наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфи-ринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями.

Процессы комплексообразования сказываются практически на свойствах всех частиц, образующих комплекс. Чем выше прочность связей лиганда и комплексообразователя, тем в меньшей степени в растворе проявляются свойства це Комплексы проявляют окислительно-восстановительные свойства за счет окислительно-восстановительных превращений комплексо-образователя, образующего устойчивые степени окисления центрального атома и лигандов и тем заметнее сказываются особенности комплексами.

21. Взаимопревращаемость различных видов энергии. Первый закон термодинамики. Внутренняя энергия и энтальпия.

Всего человечеству известно 15 видов энергии, из которых на практике используют всего 10, среди которых 4 самых важных: тепловая, механическая, химическая, электромеханическая.

От одного вида энергии можно перейти к другому согласно Закона Сохранения Энергии.
Достоинство химической энергии — легко транспортируется, долго сохраняется и легко превращается в другие полезные виды энергии.
Можно выделить три вида систем:


Открытые – происходит обмен по веществу и энергии между системой и окружающей средой.

Закрытые – происходит обмен по энергии.

Изолированные– нет обмена по веществу и энергии (вакуум).

Первый закон термодинамики

Систему можно охарактеризовать внутренней энергией , которая слагается из всех видов движения частиц, из которых слагается система.

Изменение внутренней энергии системы. Обычно связывают с изменением тепла Q и работой, осуществляемой системой дельта А.
дельта U= дельта Q-дельтаA – первый закон термодинамики, согласно которому энергия не может создаваться из ничего, но может превращаться из одной формы в другую.

Внутренняя энергия и энтальпия.

Изменение внутренней энергии веществ, участвующих в реакции, при постоянном объеме принято кратко называть внутренней энергией реакции. Поскольку все химические реакции сопровождаются перераспределением (обменом) внутренней энергии, сумма внутренней энергии продуктов отличается от суммы внутренней энергии реагентов на значение внутренней энергии реакции:

ΔU = ∑Uпродуктов — ∑Uреагентов

Изменение ΔU в каком–либо процессе представляет собой разность количества теплоты Q, которой химическая реакция обменивается с окружающий средой при теплопередаче, и совершенной работы A:

ΔU = Q — A

энтальпия реакции ΔH — это тепловой эффект реакции при постоянном давлении


ΔH = ΔU + pΔV

Энтальпия. Реакция равна сумме энтальпии образования конечных продуктов минус энтальпия образование исходных реагентов. Для любого простого вещества в устойчивых стандартных условиях значения энтальпии принимается равным нулю.

22. Закон Гесса. Стандартная энтальпия образования химических соединений.

Закон Гесса — основной закон термохимии, который формулируется следующим образом:

Тепловой эффект хим реакции не зависит от пути числа стадий процесса, а определяется исходным и конечным состоянием реагента.

Исх.реагент (j) = Конечные продукты (i)

Под стандартной теплотой (энтальпией) образования понимают тепловой эффект реакции образования одного моль вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H2(г) = CH4(г) + 74.9 кДж/моль.

Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔHI2(тв)0 = 0 кДж/моль, а для жидкого йода ΔHI2(ж)0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

ΔHреакцииO = ΣΔHfO (продукты) — ΣΔHfO (реагенты)

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеся выделением тепла в окружающую среду называются экзотермическими. Реакции, сопровождающиеся поглощением тепла называются эндотермическими.

23. Понятие об энтропии. Второй закон термодинамики. Энергия Гиббса и направленность химических процессов.

Энтропи́я — меру необратимого рассеивания энергии.

Функция, которая приводит систему в состояние хаоса обозначается дельта S.

Математически энтропия определяется как функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы:

— приращение энтропии; — минимальная теплота, подведённая к системе; -абсолютная температура процесса.

Энтропия устанавливает связь между макро- и микро- состояниями. Поскольку энтропия является функцией состояния, то она не зависит от того, как осуществлён переход из одного состояния системы в другое, а определяется только начальным и конечным состояниями системы. Чем больше значение энтропии, тем больше беспорядок в системе.

Понятие энтропии лежит в основе второго закона термодинамики.

Невозможно самопроизвольно осуществить переход теплоты от холодного тела к горячему.

дельтаG – свободная энергия Гиббса.

Дельта G = дельта H — T дельта S (второй закон термодинамики) Второй закон термодинамики используют для анализа возможности протекания химических реакций.

Энергия Гиббса и направление протекания реакции.

В химических процессах одновременно действуют два противоположных фактора — энтропийный и энтальпийный. Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре, определяет изменение энергии Гиббса:

Энергию Гиббса часто называют также свободной энергией.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При процесс может протекать в прямом направлении, при процесс может протекать в обратном направлении. Если же , то система находится в состоянии химического равновесия.

24. Скорость химической реакции. Закон действия масс.

Скорость химической реакции —величина, равная отношению изменения молярной концентрации вещества к интервалу времени, в течение которого произошло данное изменение. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение умножается на −1.

Например, для реакции:

выражение для скорости будет выглядеть так:

Скорость гомогенной реакции – это изменение кол-ва вещ-ва в ходе реакции за единицу времени в единице объема системы.

Скорость гетерогенной реакции – это изменение кол-ва в-ва в ходе реакции за единицу времени на единице поверхности фазы.

Закон Действия Масс

Необходимым условием протекания реакции должно быть сближение и столкновение частиц друг с другом. Скорость реакции будет прямо пропорциональна числу таких столкновений.

Формулировка ЗДМ: Скорость хим реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях равных коэффициентам уравнений реакции.

25. Факторы, влияющие на величину скорости химической реакции.

Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции: концентрации с, температуры t , присутствия катализаторов, а также от некоторых других факторов (например, от давления — для газовых реакций, от измельчения — для твердых веществ, от радиоактивного облучения).

Влияние концентраций реагирующих веществ. Чтобы осуществля­лось химическое взаимодействие веществ А и В, их молекулы (части­цы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда на основе обширного экспериментального материала сформулирован основной за­кон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:

Cкорость химической реакции пропорциональна произведению концентра­ций реагирующих веществ.

Для реакции ( I ) этот закон выразится уравнением

v = kcA cB , (1)

где сА и сВ — концентрации веществ А и В, моль/л; k — коэффициент пропорциональности, называемый константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс.

Из уравнения (1) нетрудно установить физический смысл константы скорости k : она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ сос­тавляют 1 моль/л или когда их произведение равно единице.

Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Уравнение (1), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции. Если опытным путем определено кинетическое уравнение реакции, то с его помощью можно вычислять скорости при других концентрациях тех же реагирующих веществ.

Влияние температуры .

Зависимость скорости реакции от температу­ры определяется правилом Вант-Гоффа:

При повышении температуры на каждые 100 скорость большинства реакций увеличивается в 2-4 раза.

Математически эта зависимость выражается соотношением

vt 2 = vt 1 γ ,

где vt 1 , vt 2 — скорости реакции соответственно при начальной ( t 1 ) и конечной ( t 2 ) температурах, а γ — температурный коэффициент скоро­сти реакции, который показывает, во сколько раз увеличивается ско­рость реакции с повышением температуры реагирующих веществ на 10°.

Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реак­ции. Температура влияет на скорость химической реакции, увеличивая константу скорости.

26. Химическое равновесие. Константа равновесия.

Хим. Реакции могут быть обратимыми и необратимыми.

Необратимые при определенных условиях практически идут в одном направлении.

Обратимые при одних и тех же условиях идут как в прямом, так и в обратном направлении.

vпр = k12; vобр = k2

k1ab = k2cd

k – величина, характеризующая выход данной реакции.

Величина константы хим. равновесия зависит от температуры и природы реагирующих веществ, не зависит от концентрации веществ.

27. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.

Направленность хим.реакции определяется изменением значения свободной энергией Гиббса.

Химическое равновесие подвижно, при постоянстве условий равновесие сохраняется.

Нарушение условий в системе приводит к неравновесному состоянию в системе, которое стремится к установлению нового равновесия.

Направление смещения равновесия определяется принципом Ле-Шателье: Если на систему, находящуюся в равновесии оказать какое-либо воздействие, то равновесие смещается в том направлении, в котором воздействие уменьшается.

Факторы, влияющие на направление смещения равновесия.

1. Концентрация– для смещения равновесия вправо надо увеличить конц. исходных реагентов.
Для смещения влево увеличить конц. продуктов реакции.

Внутренняя энергия. Энтальпия. Теплота и работа – две формы передачи энергии.

Стр 1 из 9

Внутренняя энергия. Энтальпия. Теплота и работа – две формы передачи энергии.

Внутренняя энергия (U)- зависящая от термодинамического состояния системы, равна сумме всех видов энергии частей системы, за исключением кинетической и потенциальной энергии как целого.

=Дж

Зависит от :

Характера движения и взаимодействия частиц в системе

От природы составляющих систему в-в

От массы

От внешних условий- темп, давл, объема

Энтальпия-энергия, которой обладает система при постоянном давлении

=Дж

Связь энтальпии с внутр энергией ∆H=∆U+A, A=p*∆V

=>∆H=∆U+ p*∆V

А-работа, совершаемая против дей-я внеш сил, р-давление

Стандартная энтальпия-это изменение 1 моля в-ва в стандартных условиях(Т=298К, р=101,325 кПа)

=кДж/моль

Расчет изменения энтальпии в процессе хим р-ции

∆H 0298(р-реакции)= ∑n∆H 0298(обр-образования)- ∑n∆H 0298(обрахования исзодных в-в)

Теплота и работа-не форма энергии, а способ ее передачи. Они не являются термическими состояниями, следовательно их величины зависит от пути процесса в отличие от U,H.G,S,F

==Дж

3. Первое начало термодинамики: формулировки, применение к биосистемам.

Первое начало термодин=частный случай закона сохря в-вв

Вечный двигатель 1го рода невозможен, т.е. невозможно создать машину, которая производила бы без подведении энергии из вне,иначе говоря «создавать энергию»

Кол-во теплоты, полученное термодинамич-й системой расходуется на увеличение внутр и внеш энергии работы, совершаемую против действия внеш сил.

Q=∆U+A, преобразовав получим ∆U= Q-А

U-внутр энергия

Q-кол-во теплоты

А- работа,совершаемая против действия внеш сил.

Применение к биосистема.Живой организм не явл-ся источником новой энергии, поэтому полностью подчиняется требованиям 1го закона ТД, со следующей формулировкой: Все виды работ в организме совершаются за счет эквивалентного кол-ва энергии, выделяющийся при окислении хим в-в(3я формулировка)

Закон Гесса: формулировка, следствия, практическое значение

Закон Гесса- основной закон термохимии, который формулируется следующим образом:

Тепловой эффект реакции зависит только от природы и состояния исходных веществ и конечных продуктов и не зависит от пути, по которому реакция протекает.

Закон открыт русским химиком Г.И.Гессом в 1840г.

Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.

Следствия из закона Гесса:

ü Тепловой эффект реакции равен сумме теплот образования продуктов реакции минус сумма теплот образования исходных веществ

ΔН=∑ΔНпрод.-∑ ΔН исх.

ü Теплота (стандартная энтальпия) образования органического соединения равна разности между теплотой сгорания простых веществ, из которых оно может быть получено ( С-графит, Н2-газ, S-ромб), и теплотой сгорания самого соединения.

ΔН=∑ΔНсгор.исх.-∑ ΔНсгор.прод.

Второе начало термодинамики: формулировки Клаузиуса и Томсона. Свободная и связанная энергия.

Второй закон устанавливает, что все реальные самопроизвольно идущие процессы являются необратимыми

Примеры необрат процессов-расширение газов, растворение, все процессы в организме

Формулировки:

Тепло не может самопроизвольно переходить от более холодного к более тёплому телу (Р. Клаузиус).

Невозможно при помощи неодушевлённого материального двигателя непрерывно получать работу, только охлаждая какую-либо массу вещества ниже температуры самой холодной части окружающей среды (В. Томсон)

Свободная и связанная энергия.

Из формулировки 2 зкона следует, что не весь запас внутр энергии системы при постоянной темературе может превращаться в работу-это физический смысл 2го закона

Условно, внутр энергию системы можно представить U=F+Q

F-свободня энергия(часть вн. Энергии,способная производить работу)

Q-связанная эрергия

Т.к U и F ф-ции состояния, то ∆U=∆F+Q

Толкование энтропии (S)-функция состояния, которая служит мерой беспорядка(неустойчивости) системы

Вычисление S в различных процессах

1.изотермический-т-пост

∆S=Q/T =Дж/кк

2.неизотермич

∆S=C* lnT2/Т1 = 2,3С * lg T2/Т1

С-молярная теплоемкость в-в

∆S>0 процесс протекает самопроизв

Энтропия с точки зрения классической термодинамики (энтропия как мера связанной энергии). Определение энтропии, расчет энтропии веществ в различных процессах (изотермический, изобарный, изохорный), стандартная энтропия, расчет DS химической реакции. Свойства энтропии.

Энтропия- мера связанной энергии, т.е. количество связанной энергии, приходящейся на 1К.

Понятие энтропии было впервые введено в 1865г. Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение общего количества тепла ΔQ к величине абсолютной температуры Т (т.е. тепло, переданное системе, при постоянной температуре).

· Изотермический процесс (Т=const):

ΔS= ΔQ/Т

= Дж/К

· Неизотермические процессы ( изобарный (Р=const), изохорный (V=const)):

ΔS= С*lnT2/ Т 1 = 2,3*lg lnT2/ Т1 , где С-молярная теплоемкость в-ва.

Стандартная энтропия (S298) – абсолютное значение энтропии 1 моля в-ва, рассчитанное для стандартных условий.

= Дж/моль*К

ΔS298 =∑nS 298(прод.) — ∑nS 298(исх.)

Свойства энтропии:

1. Энтропия тела при абсолютном нуле равна нулю.

2. Энтропия веществ может быть только положительной величиной.

3. Энтропия является величиной аддитивной: энтропия сложной системы равна сумме энтропий ее частей.

Зависимость скорости реакции от концентрации реагирующих веществ (закон действующих масс). Константа скорости.

Закон действующих масс сформулирован в 1867 г. норвежскими учеными К. Гульдбергом и П. Вааге: скорость простой реакции в каждый момент времени пропорциональна произведению концентраций реагирующих веществ, возведенных в степени, равные коэффициентам в стехиометрическом уравнении.

-для гомогенной реакции:

аА + bB= fF + dD

Математическое выражение ЗДМ:

V= k* Cа А * Cb B ,где

k- константа скорости.

Примечания:

1.математическое выражение ЗДМ называется кинетическим уравнением.

2.сумма показателей степеней в кинетическом уравнении, как правило, не больше 3.

a+b≤ 3

3.ЗДМ применим только к гомогенным, простым реакциям или к отдельным стадиям сложных.

Если изменить концентрацию реагирующих в-в, скорость системы или давление, то скорость данной р-ции изменится в соответствии с ее кинетическим ур-нием.

Физический смысл константы скорости.

аА +bB= fF + dD

CА =CВ = 1моль/л

Са А * Сb B =1

В случае гомогенной р-ции, кинетическое ур-ние будет иметь вид V= k. Вывод: константа скорости хим. р-ции (при условии, что концентрация реагирующих или их произведение в соответствии со степенями) равна 1.

В случае гетерогенной р-ции, в кинетическое ур-ние входят только концентрации газообразных и жидких в-в. Концентрация твердого в-ва , на поверхности которого протекает р-ция , изменяется незначительно, считается величиной постоянной, не включается в ур-ние.

Зависимость скорости реакции от температуры. Правило Вант-Гоффа, особенности температурного коэффициента для биохимических процессов. Уравнение Аррениуса. Энергия активации.

В 1884 г. Вант-Гофф установил, что при повышении температуры на 10 градусов скорость многих реакций увеличивается в 2–4 раза.
Математически эта зависимость выражается соотношением:

Vt2 = Vt1*ɣ^t2-t1/10,

Kt2= kt1*ɣ^t2-t1/10

где V2 и V1 — скорости реакции при температурах t1 и t2,

k — константа скорости,

ɣ — температурный коэффициент скорости реакции.

Для многих реакций ɣ имеет значения в пределах 2–4.

Если t2-t1=10, то Vt2/Vt1= k t2/k t1= ɣ или что одно и тоже ɣ=Vt+10/Vt=kt+10/kt

Физический смысл температурного коэффициента.

Из последнего ур-ния следует, что ɣ- величина, показывающая во сколько раз увеличивается скорость р-ции или константа скорости при увеличении температуры реакционной смеси на 10 градусов.

Ферментативные р-ции имеют более высокие значения температурного коэф.
ɣ= 7-10 (процессы денатурации белка)

Все жизненные процессы протекают в небольшом температурном интервале.

Уравнение Аррениуса.

k=A* e^-Ea /R*T, где

k- константа скорости,

А- постоянная для данной р-ции величина= общему числу соударения в единицу скорости за единицу времени,

е- основание натурального логарифма,

Еa- энергия активации- количество энергии, которое необходимо сообщить молекулам реагирующих в-в, чтобы они при столкновении могли вступить в хим.взаимодействие,т.е. стали активными,

R- универсальная газовая постоянная,

Т- абсолютная температ. процесса.

КБС.

· При добавлении сильной кислоты в реакцию вступает солевой компонент и наоборот.

Пр.: ацетатная БС.

CH3COONa + HCl= CH3COOH + NaCl

CН3COO- + H+= CH3COOH

При добавлении сильной кислоты образуется эквивалентное кол-во слабой уксусной кислоты, являющейся компонентом БС. Увеличение концентрации CH3COOH, в соответствии с законом разведения Освальда, приводит к уменьшению степени ее диссоциации. В результате этого концентрация Н увеличивается незначительно и рН практически не меняется.

· При добавлении щелочи.

CH3COOH + NaOH= CH3COONa + H2O

CH3COOH + OH- =CH3COO — + H2O

Гидроксид-ионы, влияющие на реакцию среды, превращаются в эквивалентное количество воды, являющейся слабым электролитом. Уменьшение концентрации CH3COOH увеличивает ее степень диссоциации, следовательно, увеличения рН из-за расходования уксусной кислоты не происходит.

ОБС.

· При добавлении сильной кислоты в реакцию вступает основный компонент, а при добавлении щелочи- солевой.

Пр.: аммиачная БС.

NH4ОН + HCl= NH4Cl + H2O

NH4OH + H+=NH4+ + H2O

Механизм действия ОБС при добавлении сильной кислоты аналогичен мех-му действия КБС при взаимодействии со щелочью

· При добавлении щелочи.

NH4Cl + NaOH= NH4ОН+ NaCl

NH4++ ОН — = NH4ОН

Механизм действия ОБС при добавлении щелочи аналогичен мех-му действия КБС при добавлении сильной кислоты.

Амфолитные БС

При взаимодействии АБС с кислотой в реакцию вступает концентрированная кислотная группа (акцептор Н+), а при взаимодействии со щелочью- концентрированная основная группа(донор Н+). В результате ионы, влияющие на реакцию среды, нейтрализуются и рН практически не меняется.

Пр.: белковая БС.

· Взаимодействие с сильной к-той.

· Взаимодействие со щелочью

В процессе нейтрализации белковые частицы приобретают заряд: при взаимодействии с к-той- положительный, при добавлении щелочт- отрицательный.

Разбавление водой.

Разбавление БР в 10,20 и более раз незначительно влияет на их рН.

Из уравнения Г-Г видно, что при разбавлении БР, концентрации компонентов уменьшаются одинаково, и их отношение не меняется, следовательно, не меняется рН

Механизм действия.

При накоплении в организме кислых продуктов они вступают в реакцию нейтрализации с бикарбонатом Na с образованием NaCl и H2CO3 (который диссоциирует на CO2 и H2O) CO2 с помощью гемоглобиновой буферной системы переносится в легкие, а оттуда выводится из организма. Таким образом существует связь между этими двумя буферными системами.

NaHCO3 + НCl NaCl + H2CO3 (диссоциирует на)

H2O CO2

При появлении в крови избытка щелочных продуктов в реакцию вступает второй компонент буферной системы H2CO3, в результате чего образуется бикарбонат Na и вода. Избыток NaHCO3 удаляется через почки.

H2CO3 + NaOH NaHCO3 + H2O

Таким образом, благодаря легким и почкам соотношение между NaHCO3 и H2CO3 поддерживается на постоянном уровне равном 20:1 (это соотношение свидетельствует о том, что щелочной компонент буфера должен быть больше кислотного резерва т.к. вероятность образования в организме кислого продукта намного выше).

Фосфатная буферная система.

1% от всей емкости крови. Она представлена солями фосфорной кислоты: двух и одного замещенного фосфорнокислого Na.

Na2HPO4/ NaH2PO4 = 4:1

Механизм действия.

При появлении в среде кислого продукта появляется однозамещенный NaH2PO4-менее кислый продукт, а при защелачивании двузамещенный Na2HPO4.

Действие фосфатного буфера связано с действием почек, а механизм регуляции, как и у бикарбонатной буферной системы, т.е. при закислении среды в почках возрастает секреция ионов водорода в просвет канальцев, где эти ионы вступают в реакцию с двузамещенным фосфорнокислым Na (Na2HPO4) и образованием Na2H2PO4 который выделяется с мочой, и наоборот.

HPO42- + H+ H2PO4-

H2PO4- + OH- HPO42- + H2O

Белковая буферная система.

Имеет меньшее значение для поддержания К.О.С. в плазме крови.

Механизм :

1. Взаимодействие с кислотой

(NH4)+-R-(COO-)+H+=(NH3)+ -R-(COOH)

2. Взаимодействие со щелочью

(NH3)+ -R-(COO-)+ OH- =(NH2) -R-(COO-)+H2O

Коррекция КОС

Ацидоз- вводят гидрокарбонат Na

Протекающие процессы

1. Диссоциации NaHCO3

NaHCO3 = Na+ +HCO3-

2. Нейтрализация избытка H+

H++ HCO3- = H 2CO3 В рез-те образуется слабая кислота

Алкалоз- вводят внутривенно кислотный р-р глюкозы, получаемый добавление 100мл 1% р-р HCL к 1л 5% р-ра глюкозы

Протекающие процессы

1. Диссоциация сильной кислоты

HCL= H+ + CL-

2. Нейтрализация OH-

H++ OH- = H 2O

В результате ион, влияющие на реакцию среды нейтрализуются, превращаясь в слабый электролит воду

Классификация

1) По заряду: кислые, анионные(электролиты), нейтральные (неэлектролиты)

K4- анионное

2) По природе лигандов:

— Аквакомплексы (L- H2O)

— Амминокомплексы (L- NH3)

— Гидрокомплексы (L- ОН-)

— Ацидокомплексы (L- анионы кислот)

— Смешенные лигандные комплексы (различные L)

— Внутрикомплексные соединения (хеланты)

Ст.

+ = + NH3

Вторичная диссоциация

Ст.

+ = Аg+ + NH3

Сложив левую и правую части, получим сумму диссоциаций

+ = Аg+ + 2NH3

Применив закон действующих масс для постоянного химического равновесия получим:

Кн= *(-)2/+], где Кн- константа нестойкости Кн=Кд(Кк)=Кравновесия

Кн является мерой устойчивости комплексной частицы. Чем больше устойчивость, тем меньше образуется простых частиц при диссоциации, тем меньше Кн.

Величина обратная Кн- константа устойчивости Ку.

Ку=1/Кн

Чем прочнее комплекс, тем больше Ку

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ Кн И Ку.

С их помощью можно предсказать возможность протекания реакций с участием КС

Реакция возможна, если Кн<Кн(исх. компл.). Образование более устойчивое

Комплексное соединение.

Кн связано с ∆G реакции диссоциации комплекса уравнением изотермы химической реакции

∆G=-RTLnКн=2,3RTLgКн

28. Металлоферменты и другие биокомплексные соединения: гемоглобин и его производные, цитохромы, каталаза, пероксидаза, витамин В12 (пространственное строение, функции, электронное строение и тип гибридизации комплексообразователя)

Гемоглобин состоит из глобина (высокомолекулярный белок). Состоит из 4 субъединиц (2 α и 2 β) К каждой спирали присоединён гемоглобин.

Гемоглобин КС железа (+2) с протопорфином(ароматический, небензоидный, плоский, макроциклический, состоящий из 4 гетероциклов, 5 членное соединение с 1 атомом N.

Соединения между гетероциклическими метиленовыми группами. Метиленовые группы не принимают участие в связи с Fe.

ПРОТОПОРФЕРИНОВОЕ КОЛЬЦО

Простое строение определяется типом гибридизации комплексообразователя Fe+2d2sp3 КЧ

Октаэдр

Каталаза, пероксидаза, цитохром С (ЦТХЗ) витамин B12(формула витамина!!!)

Является металоферментом

ЦТХС(формула в интерн.)

Основное отличие от гемоглобина- отсутствие переменного лиганда, то есть все лиганды(L) постоянны.

ЦТХС является католизатором различных реакций. Участвует в переносе энергии в митохондрии. Перенос энергии осуществляется благодаря реакции.

Физические

А. метод замены растворителя– получается из истинного раствора путем добавления растворителя.

Условия получения:

1.объем истинного раствора намного больше объема нового растворителя.

2.ДФ плохо растворяется в новом растворителе.

3.оба растворителя хорошо смешиваются друг с другом.

Пример: при добавлении 5 мл воды несколько капель спиртового раствора канифоли образуется коллоидный раствор, что можно установить появлением голубого окрашивания.

2.Химический – они основываются на химических реакциях, в результате которого образуются нерастворимые в воде вещества. Для получения золей химическим методом необходимо два условия:

1 – это невысокая концентрация исходных растворов

2 – избирательность одного из реактивов

Метод окисления.

2H2S + O2 = HS + H2O

S-2-2 = S0 восстановитель, окисление

O20 +4 = 2O-2, окислитель, восстановление.

Метод восстановления – реакция присоединения электрона ионами, которые затем превращаются в атомы, конденсируются в качестве каллоидной частицы.

В качестве восстановителя используется водород, формалин, танин.

Ag2O + H2 = 2Ag + H2O

Метод гидролиза – при получении изолей из солей, в результате реакции образуются плохо растворимые вещества.

FeCl3 + 3 H2O = Fe(OH)3 + 3HCl

Fe(OH)3 + HCl = FeOCl + 2 H2O

FeOCl = Feo+ + Cl-

Метод обменного разложения – основан на взаимодействии двух веществ. В результате реакции образуется новое труднорастворимое вещество, способное сохраняться в высоко дисперсном состоянии

2H3AsO3 + 3H2S = As3S2 + 6H2O

{nHS-(n-x)H+}x-xH+

Понятие биогенности химических элементов: химические элементы в организме человека, их классификация по степени важности для процессов жизнедеятельности, биогенные элементы в периодической системе. Биосфера, круговорот биогенных элементов в природе. Кларки элементов.

Биогенными называются элементы, необходимые для построения и жизнедеятельности различных клеток и организмов.

БЭ в периодической системе:

I Н

II все кроме Be,Ne

III все кроме Ar

IV все кроме Se,Ga,Ge,Kr

V Sr,Mo,Cd, Sn,I

Примечания: 1. Всего в ПС 33 БЭ: 7 s-элементов, 11 d-элементов, 15 р- элементов

2.большинство БЭ находятся в II-IV

3. Среди БЭ нет инертных газов

Классификация БЭ по степени значимости для жизнедеятельности (В.В.Ковальский):

3.Примесные элементы обнаружены в организме человека и животных, но данные о количестве и их биологическая роль не выяснены: Sc,Tl,In,La,Pr,Sm,W,Re,Tb

Биосфера- часть земной оболочки, занятая растительными и животными организмами. По Вернадскому, биосфера- это определенным образом организованная среда, переработанная живыми организмами и космическими излучениями и приспособленная к жизни.

Согласно Вернадскому, живые организмы принимают активное участие в перераспределении хим. элементов в земной коре. Особое значение имеют круговороты биогенных хим.элементов, прежде всего углерода. Растительные организмы извлекают из атмосферы до 300 млрд. т углекислого газа ежегодно. Растения частично поедаются животными, частично отмирают. Орг. вещество в результате дыхания организмов, разложения их остатков, процессов брожения и гниения превращаюся в углекислый газ или отлагается в виде гумуса, торфа.

Железо (Fe)

В организме содержится 5-5,5 г, большая его часть 70-80% находится в гемоглобине.

Ежедневная доза- 1,2 мг. Ежедневное потребление 10-20 (5-10) мг

Из пищи поступает в организм только 10-20% железа.

Недостаток Fe вызывает железодефицитную анемию. Соединения железа выполняют каталитическую, транспортную, буферную функцию.

Цинк (Zn)

В организме содержится 2,3 г.

Суточная потребность 13 мг.

Биологическая роль Zn обусловлена постоянным зарядом его иона. Известно более 40 металлоферментов , активирующих гидролиз белка, пептидов.
Zn влияет на основные процессы кроветворения, размножения, роста и развития организма.

Медь (Cu)

В организме содержится 100 мг.

Суточная норма- 2-3 мг

Главная функция- ферментативная. Известно около 25 медьсодержащих ферментов. Участие меди в ОВР основано на легкости превращения: Cu2+ +e=Cu+
Cu участвует в кроветворении

Марганец (Mn)

В организме содержится 12 мг.

Суточная потребность 5-7 мг.

Присутствует в виде ионов M2+ или в комплексе с белками, амк.

Функция- регуляция активности различных ферментов. Активируя АТФ, марганец участвует в процессах аккумуляции и переноса энергии. Мn стабилизирует структуру нуклеиновых кислот.

Молибден (Мо)

В организме содержится 9 мг.

С пищей потреб. 0,2-0,3 мг/сут.

Входит в состав ферментов, которые катализируют окислительно- восстановительные процессы. Входе этих реакций, его степень окисления с +6 уменьшается до +5,+4, происходит восстановление. При избыточном поступлении молибдена происходит активация синтеза ксантиноксидазы.

Хром (Cr)

Содержание в организме 6-6,6 мг

Суточная потребность- 0,15мг.

Преимущественно концентрируется в костях, содержится в эритроцитах.

Cr участвует в обмене НК, входит в состав ферментных систем. Иона Cr3+ участвуют в стабилизации НК.

Кобальт (Со)

В организме содержится 1,2 мг.

Ежедневное потребление- 0,3 мг.

5-10% входит в состав витамина В12, Со единственный из металлов, входящий в структуру витамина. Участвует в ОВР организма, поскольку возможен процесс:
Со3+ +е= Со2+

Со влияет на минеральный, липидный обмен, участвует в кроветворении. Недостаток Со вызывает злокачественную анемию.

Номенклатура органиеских соединений.Понятие о структурной изомерии органических соединений . Строение атома углерода , типы гибридизации и виды ковалентной связи в орг соединениях. Связь пространственного строения орг. соединений с их биолог активностью

Названия углеводородов и алкильных групп:

Метан СН4 Метил СН3-
Этан С2Н6 Этил С2Н5-
Пропан СН3СН2СН3 Пропил Изопропил СН3СН2СН2- СН3СНСН3
Бутан СН3СН2СН2СН3 Бутил Изобутил Втор. бутил Трет. бутил

по номенклатуреIUPAC

( заместительная номенклатура)

Для составления названия органического соединения по номенклатуре IUPAC необходимо выполнить следующие операции:

1. Определите функциональную (характеристическую) группу, если она имеется, суффикс которой используют при составлении названия. При составлении названия используется суффикс только одной функциональной группы, называемой главной ( исключение: суффиксы двойной или тройной связи). Все заместители, в том числе и другие младшие функциональные группы, указываются префиксами.

Некоторые характеристические группы, расположенные

в порядке уменьшения старшинства

2. Определите родовой гидрид:

а) для ациклических соединений родовым гидридом является самая длинная неразветвленная цепь, включающую главную функциональную группу а также двойные и (или) тройные связи. Родовой гидрид образуется прибавлением атомов водорода вместо заместителей или гетероатомов, присоединеннных к длинной цепи, чтобы получился насыщенный углеводород.

б) для циклических соединений родовым гидридом является насыщенный циклоалкан, например циклогексан или полностью ненасыщенный углеводород ( гетероциклическое соединение), например бензол, пиридин и т.д.

3. Назовите родовой гидрид вместе с суффиксом главной группы.

4. Пронумеруйте самую длинную цепь таким образом, чтобы атом углерода главной функциональной группы получил наименьший номер.

5. Назовите заместители вместе с цифрами(локантами), указывающими атомы углерода, при которых заместители находятся и присоедините их к названию родового гидрида. Локанты двойной и (или) тройной связи и локант главной функциональной группы расположите перед соответствующими суффиксами.

1-ый пример

Н3С — СН2 — ОН НО — СН2 — СН2 — ОН

Главная группа: -ОН -ол

Родовой гидрид: Н3С — СН3 этан

Название: этанолэтандиол-1,2

2-ой пример:

3-ий пример:

Пространственные изомеры: Энантиомеры

Строение атома углерода

Типы гибридизации

В зависимости от числа вступивших в гибридизациб орбиталей том углерода может находиться в 3 видах гибрид-ии

1.первое валентное состояние sp3 гибр- при комбинации 1 s и 3 p орбиталей,

2. Sp2- 1s и 2p

3. Sp -1s и 1p

Ковалентная связь-хим связь, образованная за счете обобщения электронов связываемых атомов-осн тип связи в орг в-вах

Неполярная КС-связь, образованная между атомами с одинаковой электроотрицательностью, при которой связующее электронное облако равномерно распределено в обасти пространства между ядрами данных атомов

Полярная КС- связь, образованная между атомами с разной электроотрицательностью, при которой связующее электронное облако смещено в сторону более электроотрицательного атома

КС бывают 2х типов: сигма и пи связи

Сигма связь-связь,образованная при осевом перекрывании атомной орбиталей с расположением максимума перекрывания на прямой ,соединяющей ядра связываемых атомов

Пи связь-образована при бороков перекрывании p-АО

46-Реакция электрофильного присоединения: гетеролитическая реакция с участием π-связи между sp2-гибридизованными атомами углерода (галогенирование, гидрогалогенирование, гидратация).

АЕ- реакция электрофильного присоединения.

Ненасыщенные углеводороды – алкены, циклоалкены, алкадиены и алкины проявляют способность к реакциям присоединения, так как содержат двойные или тройные связи. За счёт π-электронов в молекулах таких соединений имеется довольно обширная область отрицательного заряда. Поэтому они представляют собой нуклеофилы и, следовательно, склонны подвергаться атаке электрофильной частицей (электрофильмым реагентом).

Галогенирование.

Нитрование.

Алкинирование.

48-Реакция нуклеофильного замещения у sp3-гибридизованного атома углерода: гетеролитические реакции обусловленные поляризацией ϭ-связи углерод-гетероатом (галогенпроизводные, спирты).

SN-Реакция нуклеофильного замещения

SN наиболее характерны для насыщенных органических соединений, содержащих следующие функциональные группы: галоген, гидроксильную, тиольную и аминогруппу.

SN1 – характерны характерны для третичных и частично вторичных алкангалогенидов при наличии слабого нуклеофила и полярного растворителя

Механизм:

I стадия

II стадия

SN2-характерен для первичных и частично вторичных атомомв.

Механизм:

49-Реакция нуклеофильного присоединения: гетеролитическая реакция с участием π-связи углерод-кислород (взаимодействие альдегидов и кетонов со спиртами, первичными аминами). Влияние электронных и пространственных факторов, роль кислотного катализа. Биологическое значение реакции нуклеофильного присоединения.

AN-Реакция нуклеофильного присоединения.

Характерны для альдегидов и кетонов.

Большое значение в биологическом плане имеет реакция карбонильных соединений (альдегидов и кетонов) с аммиаком, при этом образуются имины (основания Шиффа), очень неустойчивые, легкогидролизующиеся соединения.

Имины являются промежуточными продуктами в некотоорых ферментативных реакциях, при синтезе аминов из альдегидов и кетонов.

Например, в организме по такой схеме синтезируются некоторые α-аминокислоты.

Взаимодействие аммиака с альдегидами может осложняться возможной циклизацией. Так, из формальдегида А.М. Бутлеров впервые получил медицинский препарат – гексаметилентетраамин (уротропин), получивший широкое применение в качестве антисептического средства.

Кислотный катализ служит для активации субстрата.

Реакционные центры.

Механизм:

В реакцияхAN для увеличения скорости реакции используется катализатор (неорганическая кислота)

Схема:

Механизм:

Высшие жирные кислоты (ВЖК)

В состав омыляемых липидов входят различные карбоновые кис­лоты от С4 до С28. Это в основном монокарбоновые кислоты с нераз­ветвленной цепью и четным числом атомов углерода, что определяет­ся особенностями биосинтеза. Наиболее распространены кислоты с числом атомов углерода 16-18.

CH3(CH2)14COOHС15Н31СООН пальмитиновая кислота

CH3(CH2)16COOHС17Н35СООН стеариновая кислота- входит в виде глицеридов в состав липидов, прежде всего триглицеридов жиров животного происхождения, последние выполняют функцию энергетического депо.

CH3(CH2)7СН = СН(CH2)7СООН С17Н33СООН олеиновая кислота

CH3(CH2)4СН = СНСН2СН = СН(CH2)7СООН С17Н31СООН линолевая кислота

CH3CH2СН = СНСН2СН = СНСН2СН = СН(CH2)7СООН С17Н29СООН линоленовая кислота

CH3(СH2)4СН = СНСН2СН = СНСН2СН = СНСН2СН = СН(CH2)3СООН С19Н31СООН арахидоновая кислота

Собственная номенкатура ненавыщенных ВЖК: концевой атом угерода обозначается ϖ(омега) отсчет двойных связей производится не как обычно от карбоксильной группы, а от метильной группы.

63.Перикисное окисление липидов.

ЦИКЛО-ОКСО-ТАУТОМЕРИЯ

Циклические формы моносахаридов изображают с помощью формул Хеуорса. Молекулу представляют в виде плоского цикла, перпендикулярного плоскости рисунка.

Циклические, особенно пиранозные формы, энергетически более выгодны для большинства моносахаридов. Например, в растворе D-глюкозы преобладает b-D-глюкопираноза

Существование равновесия между линейной и циклическими формами моносахаридов получило названиецикло-оксо-таутомерии.

Термодинамические величины. Внутренняя энергия и энтальпия

Внутренняя энергия U вещества (или системы) — это полная энергия частиц, составляющих данное вещество (см. также § 54). Она слагается из кинетической и потенциальной энергий частиц. Кинетическая энергия — это энергия поступательного, колебательного и вращательного движения частиц; потенциальная энергия обусловлена силами притяжения и отталкивания, действующими между частицами.

Внутренняя энергия зависит от состояния вещества. Изменение внутренней энергии системы AU при том или ином процессе можно определять. Пусть в результате какого-нибудь процесса система переходит из начального состояния 1 в конечное состояние 2, совершая при этом работу Л и поглощая из внешней среды теплоту Q. Ясно, что внутренняя энергия системы уменьшится на величину Л, возрастет на величину Qhb конечном состоянии будет равна:

где U1 и U2 — внутренняя энергия системы в начальном (1) и в конечном (2) состояниях. Если обозначить разность U2-U1 через AU, то уравнение можно представить в виде:

Это уравнение выражает закон сохранения энергии, согласно которому изменение внутренней энергии не зависит от способа проведения процесса, а определяется только начальным и конечным состояниями системы. Однако какая часть энергии пойдет на совершение работы, а какая превратится в теплоту — зависит от способа проведения процесса: соотношение между работой и теплотой может быть различным. В частности, если в ходе процесса не производится никакой работы, в том числе работы расширения против внешнего давления, т.е., если объем системы не изменяется, то

где Qv — теплота, поглощенная системой в условиях постоянного объема.

Последнее уравнение дает возможность определять изменение внутренней энергии при различных процессах. Например, в случае нагревания вещества при постоянном объеме изменение внутренней энергии определяется по теплоемкости этого вещества:

Здесь Cv — молярная теплоемкость вещества при постоянном объеме; п — количество вещества; AT — разность между конечной и начальной температурами.

В случае химической реакции, протекающей без изменения объема системы, изменение внутренней энергии равно взятому с обратным знаком тепловому эффекту этой реакции.

Энтальпия. Однако чаще в химии приходится иметь дело с процессами, протекающими при постоянном давлении. При этом удобно пользоваться величиной энтальпии Н, определяемой соотношением:

При постоянном давлении и при условии, что в ходе процесса совершается только работа расширения (Л = PAV)

или

Сравнивая последнее уравнение с уравнением внутренней энергии видим, что при указанных условиях

где Qp — теплота, поглощенная системой при постоянном давлении.

Последнее уравнение дает возможность определять изменение энтальпии при различных процессах. Такие определения аналогичны определениям внутренней энергии, с той разницей, что все измерения должны проводиться в условиях постоянного давления. Так, при нагревании вещества изменение его энтальпии определяется по теплоемкости этого вещества при постоянном давлении

где п — количество вещества; Cp — молярная теплоемкость вещества при постоянном давлении.

При изменениях агрегатного состояния вещества и при аллотропных переходах изменение энтальпии равно по величине, но обратно по знаку теплоте соответствующего превращения (плавление, кипение, превращение из одной модификации в другую). Наконец, в случае химической реакции изменение энтальпии равно взятому с обратным знаком тепловому эффекту реакции, проведенной при постоянной температуре и постоянном давлении.

Энтальпия, как и внутренняя энергия, характеризует энергетическое состояние вещества, но включает энергию, затрачиваемую на преодоление внешнего давления, т.е. на работу расширения. Подобно внутренней энергии, энтальпия определяется состоянием системы и не зависит от того, каким путем это состояние достигнуто. В случае газов различие между AU и АН в ходе того или иного процесса может быть значительным. В случае систем, не содержащих газов, изменения внутренней энергии и энтальпии, сопровождающие процесс, близки друг к другу. Это объясняется тем, что изменения объема (AV) при процессах, претерпеваемых веществами в конденсированных (т.е. в твердом или в жидком) состояниях, обычно очень невелики, и величина PAV мала в сравнении с АН.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *