Сложная и обратная функция

Сложные и обратные функции

Тема : Сложная и обратная функции

Сложная функция — это функция от функции. Если u — функция от x, то есть u=u(x), а f — функция от u: f=f(u), то функция y=f(u) — сложная.

А u в этом случае называют промежуточным аргументом. Еще часто f называют внешней функцией, а u — внутренней. Лучший способ понять, что такое сложная функция — рассмотреть примеры сложных функций.

1) y=sin x — эта функция «простая». Синус зависит от x. Как только вместо x под знаком синуса появится выражение, зависящее от x, даже самое простое — такая функция называется сложной. То есть y=sin u — сложная функция, если u — некоторая функция от x. Примеры сложных функций с синусом:

y=sin (x+1). Эта функция — сложная. Внутренняя функция u здесь равна x+1, а внешняя функция f — это синус. То есть u=x+1, f=sin u.

Что такое обратная функция? Как найти функцию, обратную данной?

Определение.

Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

Чтобы найти функцию, обратную данной функции y=f(x), надо:

1) В формулу функции вместо y подставить x, вместо x — y:

x=f(y).

2) Из полученного равенства выразить y через x:

y=g(x).

Пример.

Найти функцию, обратную функции y=2x-6.

1) x=2y-6

2) -2y=-x-6

y=0,5x+3.

Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

Практическая часть

А) Определите внутреннюю и внешнюю функции:

1. y=sin (5x-2x³+3)

2. y=sin (x/7)

3. y=cos (4-11x)

4.y=cos (7x³ -4x²)

5.y=tg(9-x)

6.y=ctg(2x+6)

Б)

В) Найти обратную функцию:

55. Определение сложной и обратной функции, четной и нечетной функции. Тождества, вытекающие из существования обратной функции.

Взаимно обратные функции

Пусть дана функция у = f(x). Она имеет обратную, если из зависимости у = f(x) можно переменную х однозначно выразить через переменную у. Выразив х через у, мы получим равенство вида х = g(y). В этой записи g обозначает функцию, обратную к f.

Если функция g является обратной для функции f, то и функция является обратной для функции g.

Пару функций f и g называют взаимно обратными функциями.

График обратной функции

Если мы одновременно построим графики функций f и g в одной и той же системе координат, откладывая по оси абсцисс аргументы обеих функций, а по оси ординат – их значения, то эти графики будут симметричны друг другу относительно прямой у = х.

Свойства взаимно обратных функций

Отметим некоторые свойства взаимно обратных функций.

1) Тождества. Пусть f и g – взаимно обратные функции. Тогда : f(g(y)) = у и g(f(x)) = х.

2) Область определения. Пусть f и g – взаимно обратные функции. Область определения функции f совпадает с областью значений функции g, и наоборот, область значений функции f совпадает с областью определения функции g.

3) Монотонность. Если одна из взаимно обратных функций возрастает, то и другая возрастает. Аналогичное утверждение верно и для убывающих функций.

4) Графики. Графики взаимно обратных функций, построенные в одной и той же системе координат, симметричны друг другу относительно прямой у = х.

Функция называется чётной, если справедливо равенство

INCLUDEPICTURE «http://upload.wikimedia.org/math/0/c/8/0c8b9a13c609e752ca1ebc8d082d732e.png» \* MERGEFORMATINET

Функция называется нечётной, если справедливо равенство

INCLUDEPICTURE «http://upload.wikimedia.org/math/2/1/9/219256ce95cb66bc3bf6eeac93666487.png» \* MERGEFORMATINET

56. Элементарная функция

Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из основных элементарных функций:

Степенная функция

Показательная функция

Логарифмическая функция

Тригонометрические функции

Обратные тригонометрические функции

57. Определение комплексного числа

Понятие обратной функции

Допустим, что у нас есть некая функция y=f(x), которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x∈a; b; область ее значений y∈c; d, а на интервале c; d при этом у нас будет определена функция x=g(y) с областью значений a; b. Вторая функция также будет непрерывной и строго монотонной. По отношению к y=f(x) она будет обратной функцией. То есть мы можем говорить об обратной функции x=g(y) тогда, когда y=f(x) на заданном интервале будет либо убывать, либо возрастать.

Две этих функции, f и g, будут взаимно обратными.

Для чего вообще нам нужно понятие обратных функций?

Это нужно нам для решения уравнений y=f(x), которые записываются как раз с помощью этих выражений.

Нахождение взаимно обратных функций

Допустим, нам нужно найти решение уравнения cos(x)=13. Его решениями будут все точки: x=±arсcos13+2π·k, k∈Z

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Пример 1

Условие: какая функция будет обратной для y=3x+2?

Решение

Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x, то есть выразив x через y.

Мы получим x=13y-23. Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x — функцией. Переставим их, чтобы получить более привычную форму записи:

y=13x-23

Ответ: функция y=13x-23 будет обратной для y=3x+2.

Обе взаимно обратные функции можно отобразить на графике следующим образом:

Мы видим симметричность обоих графиков относительно y=x. Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Пример 2

Условие: определите, какая функция будет обратной для y=2x.

Решение

Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0; +∞. Теперь нам нужно выразить x через y, то есть решить указанное уравнение через x. Мы получаем x=log2y. Переставим переменные и получим y=log2x.

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

Ответ: y=log2x.

На графике обе функции будут выглядеть так:

Основные свойства взаимно обратных функций

В этом пункте мы перечислим основные свойства функций y=f(x) и x=g(y), являющихся взаимно обратными.

Определение 1

Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y=f(x)=ax и x=g(y)=logay. Согласно первому свойству, y=f(g(y))=alogay. Данное равенство будет верным только в случае положительных значений y, а для отрицательных логарифм не определен, поэтому не спешите записывать, что alogay=y. Обязательно проверьте и добавьте, что это верно только при положительном y.

А вот равенство x=f(g(x))=logaax=x будет верным при любых действительных значениях x.

Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, arcsinsin7π3≠7π3, потому что область значений арксинуса -π2; π2 и 7π3 в нее не входит. Верной будет запись

arcsinsin7π3=arcsinsin2π+π3==по формулепривидения=arcsinsinπ3=π3

Графики взаимно обратных функций

  • Основные взаимно обратные функции: степенные

Если у нас есть степенная функция y=xa, то при x>0 степенная функция x=y1a также будет обратной ей. Заменим буквы и получим соответственно y=xa и x=y1a.

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

  • Основные взаимно обратные функции: показательные и логарифмические

Возьмем a,которое будет положительным числом, не равным 1.

Графики для функций с a>1 и a<1 будут выглядеть так:

  • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):

График главной ветви косинуса и арккосинуса выглядит так:

График главной ветви арктангенса и тангенса:

График главной ветви арккотангенса и котангенса будет таким:

Если же вам требуется построить обратные ветви, отличные от главных, то обратную тригонометрическую функцию при этом мы сдвигаем вдоль оси Oy на нужное число периодов. Так, если требуется обратная функция для ветви тангенса на π2; 3π2, то мы можем сдвинуть ее на величину π вдоль оси абсцисс. График будет представлять собой ветвь арктангенса, которая сдвинута на π вдоль оси ординат.

Это все свойства обратных функций, о которых мы хотели бы вам рассказать.

Обратная функция. Сложная функция.

⇐ Предыдущая123456

Если поменять ролями аргумент и функцию, то x станет функцией от y. В этом случае говорят о новой функции, называемой обратной функцией.

4. Определение предела функции в точке на языке » «. Понятие односторонних пределов. Формулировка теоремы oсуществовании предела функцииf(х) в точке .

называется предел функции f(x) при , если для любого , что при всех и

Односторо́ннийпреде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́ннимпреде́лом (или преде́ломсле́ва) и правосторо́ннимпреде́лом (преде́ломспра́ва).

Для того чтобы функция f : E → R имела в точке x0 конечный предел, необходимо и достаточно, чтобы функция f удовлетворяла в точке x0 условию Коши.

Будем говорить, что функция f : E → R удовлетворяет в точке x0 (x0 — предельная точка множества E) условию Коши, если

Определение предела функции на бесконечности.

называется предел функции f(x) при , если для любого найдётся ,что для всех выполняется неравенство

Теорема о сумме, разности, произведении и частном двух функций, имеющих пределы в точке.

Пусть функции f(x) и g(x) имеют пределы при одной и той же базе B:

Тогда функция h(x)=f(x)+g(x) также имеет предел при базе B, и этот предел L равен сумме пределов слагаемых:

Разность функций

Пусть функции f(x) и g(x) имеют пределы при одной и той же базе B:

Тогда функция h(x)=f(x) g(x) также имеет предел при базе B, и этот предел L равен произведению пределов сомножителей:

Пусть при одной и той же базе B существуют пределы и , причём . Тогда функция определена на некотором окончании базы B, существует предел , и , то есть предел отношения равен отношению пределов числителя и знаменателя.

Теорема о пределе функции, заключенной между двумя функциями, имеющими один и тот же предел.

Если функция f(x) заключена между двумя функциями g(x) и p(x), имеющими один и тот же предел, то она стремится к этому же пределу.

Определение бесконечно малой функции. Теорема о сумме и произведении конечного числа бесконечно малых функций, а также о произведении бесконечно малой функции на ограниченную функцию.

Функция называется бесконечно малой при , если

Сумма и произведение конечного числа бесконечно малой функции есть функция бесконечно малая.

Произведение бесконечно малой функции на ограниченную есть функция бесконечно малая.

9. Теорема о необходимом и достаточном условиях выполнения равенства с использованиемпонятия бесконечно малой функции. Бесконечно большие функции и их свойства.

Если f(x) имеет предел, то её можно представить как сумму постоянной и бесконечно малой функции.

Функция называется бесконечно большой при , если предел этой функции

Сумма и произведение бесконечно больших функций есть функция бесконечно большая.

Сумма бесконечно большой функции и ограниченой есть функция бесконечно большая

Произведение бесконечно большой функции на есть функция бесконечно большая.

Обратная функция

Функция — это действие над переменной. Но что будет, если сделать действие — и обратное действие? Открыть дверь и закрыть дверь. Включить свет и выключить свет. Будет то же, что и было раньше, верно? Так и с функциями.

Функции f(x) и g(x) называются взаимно-обратными, если f(g(x)) = x.

Например, при

Сделали действие (возвели в квадрат). Сделали обратное действие (извлекли квадратный корень). И получили то, что и было раньше, то есть переменную .

А вот . Подумайте, почему это так.

Другой пример взаимно-обратных функций: показательная и логарифмическая. Помните основное логарифмическое тождество: для . Для положительных х функции и являются взаимно-обратными.

Еще один пример взаимно-обратных функций:

и при

Вспомним определение функции. Числовая функция y = f(x) — это такое соответствие между двумя числовыми множествами A и B, при котором каждому числу x ∈ A отвечает одно-единственное число y ∈ B. Множество A называется при этом областью определения функции, множество B — областью значений.

Пусть соответствие f является взаимно-однозначным:

Тогда существует функция g, которая действует в обратную сторону: каждому числу y ∈ B она ставит в соответствие одно-единственное число x ∈ A, такое, что f(x) = y:

Функция g называется обратной к функции f. Точно так же и функция f будет обратной к функции g.

Если мы возьмём какое-либо число x ∈ A и подействуем на него функцией f, то получим число y = f(x) ∈ B. Теперь на полученное число y подействуем функцией g. Куда попадём? Правильно, вернёмся к исходному числу x. Это можно записать так:

(1)

Последовательное применение двух взаимно-обратных действий возвращает нас в исходную точку. Как и в жизни: сначала открыли дверь, а потом совершили обратное действие — закрыли дверь; в итоге вернулись к начальной ситуации.

Так, если возвести число 3 в степень x, а затем совершить обратное действие — взять от полученного числа 3x логарифм по основанию 3 — мы вернёмся к исходному числу x:

Графики взаимно-обратных функций симметричны относительно прямой у = x.

То, что для функции является областью определения, для обратной функции будет областью значений.

Как вывести формулу обратной функции?

Если вы учитесь в математическом классе или на первом курсе вуза, вам может встретиться такое задание.

Например, у вас есть линейная функция Какая же функция будет к ней обратной?

Действуем следующим образом:

1) Выражаем из формулы функции x через у.

Получаем:

2) В формуле меняем x и у местами. Получаем формулу обратной функции:

Другой пример. Найдем обратную функцию для функции .

1) Выражаем из формулы функции x через у. Получаем:

2) В формуле меняем x и у местами. Получаем формулу обратной функции:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *