Степень диссоциации 0

Содержание

Теория электролитической диссоциации.

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация – это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH3COOH⇄H++CH3COO-.

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α – отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты.

Сильные электролиты – это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы – это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты – степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% — связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K+.

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация – процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I – стадия:

II – стадия:

III – стадия:

На первой ступени ортофосфорная кислота – кислота средней силы, а 2ой – слабая, на 3ей – очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag++Cl-.

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды .

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды, которое зависит только от температуры. Согласно диссоциации на 1 ион Н+ приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: = .

Отсюда, = = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора ( рН ).

Кислотность растворов обычно выражается концентрацией ионов Н+. В кислых средах рН<10-7 моль/л, в нейтральных — рН = 10-7 моль/л, в щелочных – рН > 10-7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН.

Степень электролитической диссоциации

Примеры решения задач…

Степень диссоциации
отношение числа продиссоциировавших молекул электролита в растворе к общему числу его молекул
α = (Nд/N)·100%

  • α — степень диссоциации;
  • Nд — число диссоциированных (распавшихся на ионы) молекул элеткролита;
  • N — общее число молекул электролита в растворе.

Степень диссоциации является количетсвенной характеристикой процесса электролитической диссоциации.

Например, выражение «степень диссоциации уксусной кислоты в 0,1М растворе равна 2%» означает, что из каждых ста молекул уксусной кислоты только две (каждая пятидесятая) распадаются на ионы.

От чего зависит величина степени диссоциации:

  • от природы растворителя — степень диссоциации тем выше, чем выше полярность растворителя;
  • от температуры — степень диссоциации тем выше, чем выше температура;
  • от концентрации — степень диссоциации тем выше, чем ниже концентрация растворенного вещества (более разбавленный раствор);
  • от природы электролита — степень диссоциации тем выше, чем полярней связи в молекулах, по которым происходит диссоциация.

Все растворы, в зависимости от значения степени диссоциации, принято делить на три категории:

HNO2↔H++NO2- NH4OH↔NH4++OH-

Константа диссоциации

Константа электролитической диссоциации (Kд) характеризует равновесие системы электролитического раствора — это более общая количественная характеристика (по сравнению со степенью диссоциации) силы электролитов. Чем больше константа диссоциации, тем сильнее диссоциирует электролит, т.е., он легче распадается на ионы, которых в растворе становится много, и электролит становится сильным.

Ранее уже говорилось, что в растворе слабого электролита устанавливается равновесие, когда скорость диссоциации в растворе равна скорости ассоциации (см. Электролитическая диссоциация):

KA ↔ K+ + A- Kд = ()/

  • — молярная равновесная концентрация катионов;
  • — молярная равновесная концентрация анионов;
  • — молярная равновесная концентрация недиссоциированных молекула электролита.

В отличие от степени диссоциации константа диссоциации (для слабого электролита) не зависит от концентрации раствора.

Степень диссоциации и константа диссоциации связаны соотношением (c — молярная концентрация электролита):

Степень диссоциации. Сильные и слабые электролиты

Кроме константы диссоциации силу электролита можно определить по значению другого параметра, зависящего от концентрации раствора. Таким параметром является кажущаяся степень диссоциации которая показывает долю молекул распавшихся на ионы.

Степень диссоциации (a ) — это отношение числа распавшихся на ионы молекул (Nдис.) к общему числу молекул растворенного вещества (Nобщ.):

(7.6.4.)

Степень диссоциации выражают в долях единицы или в процентах. Поскольку общее число молекул вещества в растворе пропорционально количеству его вещества и его молярной концентрации, то можно записать:

(7.6.5.)

где nдис. и cдис. — соответственно, количество и молярная концентрация растворенного вещества, подвергшегося электролитической диссоциации.

К сильным электролитам условно относят вещества, кажущаяся степень диссоциации которых в растворе превышает 30% (a > 0,3). При a < 3% (a < 0,03) электролиты считают слабыми, в других случаях о них говорят как об электролитах средней силы.

Степень диссоциации обычно определяют по данным измерения электропроводности растворов, которая прямо пропорциональна концентрации свободно движущихся ионов. При этом получают не истинные значения a, а кажущиеся значения. Они всегда меньше истинных значений a, т.к. ионы при движении к электродам сталкиваются и частично уменьшают свою подвижность, особенно при высокой их концентрации в растворе, когда возникает электростатическое притяжение между ионами. Например, истинное значение степени электролитической диссоциации HCl в разбавленном растворе равно 1, в 1 М растворе a = 0,78 (78%) при 180 С, однако, в этом растворе не содержится 22% недиссоциированных молекул HCl, практически все молекулы диссоциированы.

Электролиты, которые в разбавленном водном растворе диссоциируют практически полностью, называют сильными электролитами.

К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты (H2SO4, HNO3, HClO4, галогеноводородные, кроме HF и др.), гидроксиды s-элементов (исключение — Be(OH)2 и Mg(OH)2). Кажущиеся значения a этих электролитов находятся в пределах от 70 до 100%. Диссоциация сильных электролитов — это практически необратимый процесс:

HCl ® H+ + Cl- или HCl = H+ + Cl-

С точки зрения теории электролитической диссоциации кислоты — это вещества, диссоциирующие в водном растворе с образованием катионов водорода и анионов кислотного остатка, основания — это вещества, диссоциирующие в водном растворе с образованием гидроксид-ионов OH- и катионов металла.

Слабые многоосновные кислоты диссоциируют ступенчато. Каждую ступень характеризуют своим значением константы диссоциации, например:

В связи со ступенчатой диссоциацией многоосновные кислоты способны образовывать кислые соли, NaHSO4, NaHCO3, K2HPO4 и т.д.

Слабые многокислотные основания диссоциируют ступенчато:

Этим объясняют способность многокислотных оснований образовывать основные соли: CuOHCl, (ZnOH)2SO4 и др.

ВЫЧИСЛЕНИЕ СТЕПЕНИ ДИССОЦИАЦИИ СЛАБЫХ ЭЛЕКТРОЛИТОВ

ДЗ – 3 (2)

РАСТВОРЫ ЭЛЕКТРОЛИТОВ

ВЫЧИСЛЕНИЕ СТЕПЕНИ ДИССОЦИАЦИИ СЛАБЫХ ЭЛЕКТРОЛИТОВ

Примеры решения задач

Пример 1. Степень диссоциации уксусной кислоты (α) в 0,1 М растворе равна 1,32∙10–2. Найти константу диссоциации кислоты (К) и значение рК.

Решение. Подставим данные задачи в уравнение закона разбавления Оствальда

К = α2CM/(1–α) = 1,77∙10–5 pK = -lg K = 4,75

Пример 2.Вычислить концентрацию ионов водорода в 0,1 М растворе хлорноватистой кислоты HClO (K=5∙10-8).

Решение: Найдем степень диссоциации HClO(α)

. Отсюда = α∙CM = 7∙10–5 моль.

Задачу можно решить и другим способом, используя соотношение

тогда = 7∙10–5 моль/л.

Пример 3. Во сколько раз уменьшится концентрация ионов водорода в 0,2 М растворе HCOOH (K = 0,8∙10–4), если к 1 л этого раствора добавить 0,1 моль HCOONa. Считать, что соль полностью диссоциирована.

Решение: HCOOH H+ + НCOO–

HCOONa → HCOO– + Na+

Исходная концентрация ионов водорода:

.

Концентрацию ионов водорода в растворе после добавления соли обозначим х. Тогда концентрация недиссоциированных молекул кислоты равна (0,2-х). Концентрация же ионов HCOO– слагается из двух величин: из концентрации, создаваемой диссоциацией молекул кислоты, и концентрации, обусловленной присутствием в растворе соли. Общая концентрация ионов HCOO– равна, следовательно, (0,1+х). Подставляем в формулу константы равновесия

откуда х = 3,6∙10–4 моль/л.

Сравнивая исходную концентрацию ионов водорода с найденной, находим, что прибавление соли HCOONa вызвало уменьшение концентрации ионов в

Подставляем в формулу константы равновесияЗадачи для самостоятельной работы:

1.4. Нужно приготовить раствор, содержащий в 1 л 0,5 моля NaCl, 0,16 моля KCl и 0,24 моля K2SO4. Как это сделать, имея в своем распоряжении только NaCl, KCl и Na2SO4?

1.5. Константа диссоциации масляной кислоты C3H7COOH 1,5∙10–5. Вычислить степень её диссоциации в 0,005 М растворе.

1.6. Найти степень диссоциации хлорноватистой кислоты HOCl в 0,2 н. растворе.

1.7. Степень диссоциации муравьиной кислоты HCOOH в 0,2 н. растворе равна 0,03. Определить константу диссоциации кислоты и значение рК.

1.8. Степень диссоциации угольной кислоты H2CO3 по первой ступени в 0,1 н. растворе равна 2,11∙10–3. Вычислить К1.

1.9. При какой концентрации раствора степень диссоциации азотистой кислоты HNO2 будет равна 0,2?

1.10. В 0,1 н. растворе степень диссоциации уксусной кислоты равна 1,32∙10–2. При какой концентрации азотистой кислоты HNO2 ее степень диссоциации будет такой же?

1.11. Сколько воды нужно прибавить к 300 мл 0,2 М раствора уксусной кислоты, чтобы степень диссоциации кислоты удвоилась?

1.12. Чему равна концентрация ионов водорода H+ в водном растворе муравьиной кислоты, если α = 0,03?

1.13. Вычислить в 0,02 М растворе сернистой кислоты. Диссоциацией кислоты по второй ступени пренебречь.

1.14. Вычислить , и в 0,05 М растворе H2Se.

1.15. Во сколько раз уменьшится концентрация ионов водорода, если к 1 л 0,005 М раствора уксусной кислоты добавить 0,05 моля ацетата натрия?

1.16. Рассчитать концентрацию ионов CH3COO– в растворе, 1 л которого содержит 1 моль CH3COOH и 0,1 моля HCl, считая диссоциацию последнего полной.

 

В растворах некоторых электролитов диссоциирует лишь часть молекул. Способность вещества к электролитической диссоциации называется степенью диссоциации. Она показывает отношение числа молекул, продиссоциированных на ионы, к общему числу молекул растворенного электролита:

(5.1)

где α— степень диссоциации;

п — количество ионов в растворе;

N— общее число молекул в растворе.

По степени диссоциации в растворах все электролиты делятся на две группы. К первой группе относят электролиты, степень диссоциации которых в растворах α > 30 % и почти не зависит от концентрации раствора. Их называют сильными электролитами. К сильным электролитам в водных растворах относятся щелочи: КОН, NaOH, Ba(OH)2, Са(ОН)2; кислоты: HNO3, НСl, H2SO4, НClO4, а также их соли.

Электролиты, степень диссоциации которых в растворах α< 2 % и уменьшается с ростом концентрации, называют слабыми электролитами. К ним относят воду, ряд кислот: H2S, Н2СОз, HCN, H2Si03, органические кислоты, основания р-, d- и f-элементов и NH4OH.

Между этими двумя группами нет четкой границы, одно и то же вещество в одном растворителе проявляет свойства сильного, а в другом — слабого электролита. Например, хлорид лития и иодид натрия, имеющие ионную кристаллическую решетку, при растворении в воде ведут себя как типичные сильные электролиты, при растворении же в ацетоне или уксусной кислоте эти вещества являются слабыми электролитами со степенью диссоциации в растворах меньше единицы.

Степень диссоциации зависит:

1) от природы растворителя;

2) природы растворяемого вещества;

3) концентрации раствора (при разбавлении степень диссоциации a сильно возрастает);

4) температуры.

Пример 1. Определите количество ионов SO42- в растворе, содержащем 14,2 г сульфата натрия. Сульфат натрия диссоциирует полностью. Решение. Рассчитываем количество сульфата натрия:

Сульфат натрия диссоциирует на ионы по уравнению:

Na2SO4 » 2Na+ + SO42-.

Согласно уравнению диссоциации определяем количество ионов SO42-, n(SO42-) = n(Na2SO4); n(SO42-) = 0,1 моль.

Ответ: n(SO42-) = 0,1 моль.

Пример 2. Степень диссоциации соляной кислоты равна 10 %. Определите количество анионов Сl- в растворе, содержащем 0,2 моль кислоты.

Решение. Рассчитаем количество кислоты, диссоциированной на ионы, в соответствии с уравнением (5.1):

п=; п == 0,02 моль.

Записываем уравнение диссоциации кислоты:

НС1 = H+ + Сl-.

Согласно уравнению диссоциации, определяем количество анионовСl-: n(С1-) = n(НС1);

n(С1- ) = 0,02 моль.

Ответ: п (Сl-) = 0,02 моль.

Если степень диссоциации характеризует способность вещества распадаться на ионы, то количественной мерой процесса диссоциации является константа диссоциации.

В растворах слабых электролитов процесс диссоциации протекает обратимо и его можно представить в виде обратимой химической реакции. Так, для процесса диссоциации уксусной кислоты:

CH3COOH»CH3COO-+H+

константа равновесия этого процесса будет равна:

(5.2)

где , — концентрация ионов;

— концентрация непродиссоциированных молекул.

Константа равновесия, соответствующая диссоциации слабого электролита, называется константой диссоциации.

Константа диссоциации зависит от природы диссоциирующего вещества и растворителя, температуры и не зависит от концентрации раствора.

Константа диссоциации показывает устойчивость молекул вещества к диссоциации. Чем меньше значение константы диссоциации в данном растворе, тем слабее диссоциирует электролит.

Степень диссоциации a изменяется с изменением концентрации раствора. Рассмотрим эту зависимость на примере слабого электролита уксусной кислоты:

CH3COOH»CH3COO-+H+.

Принимая исходную концентрацию кислоты равной с, а степень диссоциация a, получаем, что концентрация части кислоты, которая диссоциирована, будет равна aс. Так как при диссоциации одной молекулы кислоты образуется по одному иону Н+ и СНзСОО-, то их концентрации будут равны aс. Концентрация кислоты, оставшейся в недиссоциированном состоянии, будет равна с — aс = с(1 — a). Подставив значения равновесных концентраций ионов и кислоты в уравнение (5.2), получим:

(5.3)

Уравнение (5.3) было получено В. Ф. Оствальдом и называется законом Оствальда. Если a<< 1, то уравнение (5.3) упрощается:

Откуда

. (5.4 б)

Уравнение (5.3) называется законом разбавления Оствальда. Из него следует, что степень диссоциации уменьшается с увеличением концентрации слабого электролита. Аналогичное уравнение можно получить для слабого основания.

Многоосновные слабые кислоты и основания диссоциируют ступенчато, причем константа диссоциации по каждой последующей ступени всегда на несколько порядков ниже, чем по предыдущей.

Зная концентрацию и степень диссоциации электролита, можно рассчитать концентрацию ионов электролита в растворе:

сi=сэл×a× k (5.5)

где сi — концентрация ионов электролита, моль/дм3;

a — степень диссоциации электролита;

сэл — концентрация электролита, моль/дм3;

k — число ионов данного вида, которое образует электролит.

= = (5.6)

где с — концентрация раствора электролита, моль/дм3 ;

Кдис — константа диссоциации электролита.

Пример 3. Вычислите степень диссоциации хлорноватистой кислоты и концентрацию ионов водорода в растворе с молярной концентрацией 0,05 моль/дм3.

Кдис(НСlO) = 5×10-8 моль/дм3.

Молярную концентрацию определяем по формуле (5.5). Так как при диссоциации НС1О » Н++ СlO- образуется один ион Н+ (k(Н+) =1), то

с(Н+) = моль/дм3.

Ответ: a(HClO) = 1 ×10-3; с(Н+) = 5×10 5 моль/дм3.

Пример 4. Степень диссоциации уксусной кислоты в 0,1 моль/дм3 растворе равна 1,32×10 -2. Вычислите константу диссоциации кислоты.

Решение. В уравнение закона разбавления Оствальда (5.3) подставим данные:

Ответ: 1,77×10-5.

Ионное произведение воды, водородный показатель (рН). Вода является слабым электролитом и диссоциирует на ионы в незначительной степени. Процесс диссоциации воды может быть записан уравнением:

НОН » Н+ + ОН-.

Константа диссоциации будет равна:

Преобразуем выражение (5.7) к следующему виду:

— = Кдис. (5.8)

Концентрацию молекул воды можно рассчитать, разделив массу 1 дм3 на массу 1 моля:

моль/дм3; Кдис =1,8×10 -16.

Произведение двух постоянных величин есть величина постоянная {Кдис = const = KH20), тогда уравнение (5.8) принимает вид:

× = KH2O. (5.9)

Полученное уравнение показывает, что для воды и разбавленных водных растворов при постоянной температуре произведение концентрации ионов водорода и гидроксила есть величина постоянная.

Эта постоянная величина называется ионным произведением воды.

Численное значение ионного произведения равно:

(5.10)

Таким образом, произведение концентрации ионов водорода и гидроксильных ионов в растворе при температуре 295 К равно 10-14.

Отсюда, для чистой воды концентрация ионов при температуре 295 К равна:

моль/дм3. (5.11)

Если к чистой воде добавить кислоту, то часть ионов Н+ кислоты соединится с ионами ОН- и образуются молекулы воды. При этом концентрация Н+ возрастает, концентрация ОН- уменьшается, а произведение этих концентраций будет оставаться постоянным, равным 10-14 .

Допустим, что концентрация ионов водорода при добавлении кислоты увеличилась в 1000 раз и стала = 10-4 моль/дм3, тогда концентрация ионов в растворе будет равна:

моль/дм3

Мы получаем, что в растворах с различной средой всегда присутствуют ионы Н+ и ОН-.

Если: = = 10 -7 — нейтральная среда;

> > 10 -7 — кислая среда;

< < 10 -7 — щелочная среда.

Для характеристики кислотности (щелочности) среды введен специальный параметр — водородный показатель, или рН. Водородным показателем, или рН, называется взятый с обратным знаком десятичный логарифм концентрации ионов водорода в растворе:

Если = 10 -2 моль/дм3, то рН = -lgl0 2 = 2.

Если = 10 -7 моль/дм3, то рН = -lgl0 -7 = 7.

Если =10 -10моль/дм3 , то рН = -lgl0 -10= 10.

Следовательно, если рН = 7 — нейтральная среда;

рН > 7 — щелочная среда;

рН < 7 — кислая среда.

Точно величину рН можно определить с помощью рН-метров, менее точно — с помощью индикаторов, которые меняют окраску в зависимости от рН.

Пример 5. Концентрация ионов водорода в растворе стала равна 4× 10 -3 моль/дм3. Определите рН раствора.

Решение. В выражение (5.12) подставляем значения:

pH = -lg(4× 10 -3) = 2,4.

Ответ: рН = 2,4.

Пример 6. Вычислите рН следующих растворов.

а) НВr с молярной концентрацией 0,02 моль/дм3;

б) NaOH с молярной концентрацией 0,2 моль/дм3.

Для нахождения концентрации ионов водорода воспользуемся формулой (5.5):

с(H+ )= 0,02 × 1× 1 = 0,02 моль/дм3 = 2× 10 -2 моль/дм3. Полученное значение подставляем в выражение (5.12). pH= -lg(2× 10 -2) = l,7.

б) NaOH » Na+ + ОН- — сильный электролит. В разбавленном растворе степень диссоциации а = 1.

Для нахождения концентрации гидроксид-ионов используем формулу (5.5):

с(ОН- )= 0,2× 1× 1 =0,2 моль/дм3 = 2× 10 -1моль/дм3.

Подставляем значения:

pOH = -lg(2× 10-1) = 0,7; pH = 14 — 0,7= 13,3.

Ответ: а) рН = 1,7; б) рН =13,3.

Пример 7. Вычислите рН раствора хлорноватистой кислоты с молярной концентрацией 0,05 моль/дм3 (Kдис(НСlO) = 5× 10 -8 моль/дм3).

Решение. НС1О — слабый электролит:

HClO»H++ClO- .

Следовательно, в соответствии с законом разбавления Оствальда (5.4, б) определяем степень диссоциации:

Электролитическая диссоциация: решение задач

Теоретический материал приведен на страницах:

  • Что такое электролитическая диссоциация
  • Степень диссоциации
  • Диссоциация кислот и оснований
  • Диссоциация воды
  • Гидролиз солей
  • Как составлять уравнения ионных реакций

Освежим в памяти основные моменты, которые необходимы при решении задач.

Степень диссоциации (α) — отношение кол-ва молекул, которые распались на ионы (N’), к общему кол-ву растворенных молекул (N):

α = N’/N

Степень диссоциации зависит от концентрации раствора.

Константа диссоциации электролита (K) — количественная характеристика диссоциации — отношение произведений концентрации ионов, образованных при диссоциации, к концентрации исходных частиц. Для электролита АВ, который диссоциирует по уравнению АВ↔A-+B+:

K = ():

Константра диссоциации не зависит от концентрации веществ и может колебаться в очень ширком диапазоне — от 10-16 до 1015.

Степень и константа диссоциации связаны между собой соотношением, называемым Законом разведения Оствальда:

K = (): = C(α2:(1-α))

Для слабых электролитов:

K ≈ α2C
α ≈ √(K/C)

Диссоциация воды и её константа диссоциации:

H2O ↔ H++OH-
K = ():

Поскольку вода является очень слабым электролитом, то концентрация является практически неизменной, поэтому, остаётся постоянной и константа диссоциации воды (ионное произведение воды):

Kω = = 10-14(при 25°C)

Для чистой воды:

= = √10-14 = 10-7 моль/л

На практике пользуются водородным показателем pH=-lg:

  • pH=7 — нейтральная среда;
  • pH<7 — кислая среда;
  • pH>7 — щелочная среда.

Диссоциация кислот и оснований

Константа диссоциации одноосновных кислот (Ka-кислотный тип диссоциации; А—кислотный остаток):

Kа = ():

Многоосновные кислоты диссоциируют в несколько стадий, у каждой из которых своя константа диссоциации.

Константа диссоциации оснований обозначается Kb.

Диссоциация малорастворимых веществ

Константа диссоциации малорастворимых веществ называется произведением растворимости (ПР).

AgClтв=Ag++Cl-
K = ():
ПР(AgCl) = = const

При наличии в растворе нескольких электролитов они диссоциируют в сторону образования: 1) осадков; 2) газов; 3) слабых электролитов.

Взаимодействие солей с водой с образованием кислой и основной соли называется гидролизом.

Примеры решения задач

Пример 1. Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона водорода (H+) с гидроксид-ионом (OH-).

Решение:

  • ион водорода реагирует с гидроксид-ионом с образованием молекулы воды (реакция нейтрализации): H++OH- = H2O
  • ионы водорода образуются при диссоциации сильных кислот (HCl);
  • гидроксид-ионы образуются при диссоциации сильных оснований (NaOH); HCl+NaOH = NaCl+H2O

Пример 2. Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона водорода с карбонат-ионом.

Решение:

  • карбонат-ионы реагируют с ионами водорода с образованием гидрокарбонат-ионов (реакция протекает при недостатке ионов водорода): H++CO32- = HCO3-
  • второй вариант данной реакции — образование неустойчивой угольной кислоты, распадающейся на воду и оксид углерода (протекает при избытке ионов водорода): 2H++CO32- = H2CO3 → H2O+CO2
  • Молекулярные уравнения реакций: HCl+Na2CO3 = NaHCO3+NaCl 2HCl+Na2CO3 = 2NaCl+CO2+H2O

Пример 3. Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона серебра с гидроксид-ионом.

Решение:

  • ион серебра реагирует с гидроксид-ионом с образованием неустойчивого соединения гидроксида серебра, распадающегося на воду и оксид серебра: 2Ag++2OH-=H2O+Ag2O↓
  • ионы серебра образуются при диссоциации растворимых солей серебра (AgNO3);
  • гидроксид-ионы образуются при диссоциации сильных оснований (NaOH); 2AgNO3+2NaOH=H2O+Ag2O↓+2NaNO3

Пример 4. При взаимодействии каких растворов получится карбонат кальция (CaCO3)?

Решение:

Из таблицы растворимости видно, что карбонат кальция нерастворим в воде.

  • Сокращенное ионное уравнение для получения CaCO3 будет иметь следующий вид: Ca2++CO32- = CaCO3↓
  • Для решения задачи подойдет любое растворимое соединение кальция, которое будет диссоциировать с образованием ионов Ca2+, например, хлорид или нитрат кальция — CaCl2 или Ca(NO3)2;
  • В качестве донора ионов CO32- сойдет любой растворимый в воде карбонат, например, Na2CO3 или K2CO3;
  • Один из вариантов молекулярного уравнения: CaCl2+Na2CO3 = CaCO3↓+2NaCl

Пример 5. Растворы каких солей нужны для получения:

  • карбоната бария BaCO3;
  • фосфата кальция (V) Ca3(PO4)2;
  • сульфата свинца PbSO4

Решение:

Пример 6. Какие вещества образуются при взаимодействии растворов сульфата натрия (Na2SO4) и хлорида бария (BaCl2)?

Решение:

  • Из таблицы растворимости видно, что обе соли растворимы в воде: Ba2++2Cl- → BaCl2 2Na2++SO42- → Na2SO4
  • При слиянии растворов образуются катионы натрия и бария и анионы хлора и оксида серы. Из таблицы растворимости видно, что нерастворимую в воде соль даст сочетание Ba2+ и SO42-: Ba2++SO42-=BaSO4↓
  • Уравнение реакции будет иметь вид: Na2SO4+BaCl2=BaSO4↓+2NaCl

Пример 7. Какая соль выпадет в осадок при взаимодействии нитрата серебра (AgNO3) и хлорида кальция (CaCl2)? Написать уравнение реакции.

Решение:

2AgNO3+CaCl2 = 2AgCl↓+Ca(NO3)2 2Ag++2NO3-+Ca2++2Cl- = 2AgCl↓+2NO3-+Ca2+ 2Ag++2Cl- = 2AgCl↓ Ag++Cl- = AgCl↓ — хлорид серебра

Пример 8. Каким образом можно очистить поваренную соль (NaCl) от сульфата натрия (Na2SO4)?

Решение:

Идея решения задачи заключается в добавлении в раствор поваренной соли и сульфата натрия вещества, способного распадаться на ионы, которые свяжут ионы оксида серы в нерастворимую соль, высвободив тем самым ионы натрия.

Роль связывающего вещества выполнит хлорид кальция CaCl2.

Na2SO4+2NaCl+CaCl2 = CaSO4↓+4NaCl 2Na++SO42-+2Na++2Cl-+Ca2++2Cl-=CaSO4↓+4Na++4Cl- SO42-+Ca2+=CaSO4↓

После того, как CaSO4↓ выпадет в осадок, полученный раствор необходимо будет отфильтровать, после чего в фильтрате будет присутствовать чистая поваренная соль.

Пример 9. Написать молекулярное и ионное уравнение реакции хлорида алюминия с нитратом серебра.

Решение:

Пример 10. Рассчитать концентрацию ионов, образующихся при смешении 1 литра 0,25М раствора BaCl2 и 1 литра 0,5М раствора Na2SO4, после выпадения BaSO4 в осадок.

Решение:

Пример 11. Рассчитать pH водного раствора 0,1М HCl; 0,1M NaOH.

Решение:

Пример 12. Рассчитать концентрацию ионов водорода в растворе аммиака с концентрацией 1,5 моль/л (K=1,7·10-5).

Решение:

Решение:

Электролитическая диссоциация

Электролитической диссоциацией называют процесс, в ходе которого молекулы растворенного вещества распадаются на ионы в результате взаимодействия с растворителем (воды). Диссоциация является обратимым процессом.

Диссоциация обуславливает ионную проводимость растворов электролитов. Чем больше молекул вещества распадается на ионы, тем лучше оно проводит электрический ток и является более сильным электролитом.

В общем виде процесс электролитической диссоциации можно представить так:

KA ⇄ K+ (катион) + A- (анион)

NaCl ⇄ Na+ + Cl-

Замечу, что сила кислоты определяется способностью отщеплять протон. Чем легче кислота его отщепляет, тем она сильнее.

У HF крайне затруднен процесс диссоциации из-за образования водородных связей между F (самым электроотрицательным элементом) одной молекулы и H другой молекулы.

Ступени диссоциации

Некоторые вещества диссоциируют на ионы не в одну стадию (как NaCl), а ступенчато. Это характерно для многоосновных кислот: H2SO4, H3PO4.

Посмотрите на ступенчатую диссоциацию ортофосфорной кислоты:

Важно заметить, что концентрация ионов на разных ступенях разная. На первых ступенях ионов всегда много, а до последних доходят не все молекулы. Поэтому в растворе ортофосфорной кислоты концентрация дигидрофосфат-анионов будет больше, чем фосфат-анионов.

Для серной кислоты диссоциация будет выглядеть так:

Для средних солей диссоциация чаще всего происходит в одну ступень:

Na3PO4 ⇄ 3Na+ + PO43-

Из одной молекулы ортофосфата натрия образовалось 4 иона.

K2SO4 ⇄ 2K+ + SO42-

Из одной молекулы сульфата калия образовалось 3 иона.

Электролиты и неэлектролиты

Химические вещества отличаются друг от друга по способности проводить электрический ток. Исходя из этой способности, вещества делятся на электролиты и неэлектролиты.

Электролиты — жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический ток. Связи в их молекулах обычно ионные или ковалентные сильнополярные.

К ним относятся соли, сильные кислоты и щелочи (растворимые основания).

Степень диссоциации сильных электролитов составляет от 0,3 до 1, что означает 30-100% распад молекул, попавших в раствор, на ионы.

Неэлектролиты — вещества недиссоциирующие в растворах на ионы. В молекулах эти веществ связи ковалентные неполярные или слабополярные.

К неэлектролитам относятся многие органические вещества, слабые кислоты, нерастворимые в воде основания и гидроксид аммония.

Степень их диссоциации до 0 до 0.3, то есть в растворе неэлектролита на ионы распадается до 30% молекул. Они плохо или вообще не проводят электрический ток.

Молекулярное, полное и сокращенное ионные уравнения

Молекулярное уравнение представляет собой запись реакции с использованием молекул. Это те уравнения, к которым мы привыкли и которыми наиболее часто пользуемся. Примеры молекулярных уравнений:

Полные ионные уравнения записываются путем разложения молекул на ионы. Запомните, что нельзя раскладывать на ионы:

  • Слабые электролиты (в их числе вода)
  • Осадки
  • Газы

Сокращенное ионное уравнение записывается путем сокращения одинаковых ионов из левой и правой части. Просто, как в математике — остается только то, что сократить нельзя.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Электролитическая диссоциация. Реакции ионного обмена

Тема: Растворы и их концентрация, дисперсные системы, электролитическая диссоциация

Урок: Электролитическая диссоциация. Реакции ионного обмена

Физическая и химическая теория растворов

Еще на заре изучения электрических явлений ученые заметили, что ток могут проводить не только металлы, но и растворы. Но не всякие. Так, водные растворы поваренной соли и других солей, растворы сильных кислот и щелочей хорошо проводят ток. Растворы уксусной кислоты, углекислого и сернистого газа проводят его намного хуже. А вот растворы спирта, сахара и большинства других органических соединений вовсе не проводят электрический ток.

Электрический ток – это направленное движение свободных заряженных частиц. В металлах такое движение осуществляется за счет относительно свободных электронов, электронного газа. Но не только металлы способны проводить электрический ток.

Электролиты – это вещества, растворы или расплавы которых проводят электрический ток.

Неэлектролиты – это вещества, растворы или расплавы которых не проводят электрический ток.

Для описания электропроводности некоторых растворов необходимо понимать, что такое раствор. К концу XIX века существовало 2 основных теории растворов:

· Физическая. Согласно этой теории, раствор – это чисто механическая смесь компонентов, и никакого взаимодействия между частицами в нем нет. Она хорошо описывала свойства электролитов, но имела определенные сложности в описании растворов электролитов.

· Химическая. Согласно этой теории, при растворении происходит химическая реакция между растворяемым веществом и растворителем. Это подтверждается наличием теплового эффекта при растворении, а также изменением цвета. Например, при растворении белого безводного сульфата меди образуется насыщенный синий раствор.

Истина оказалась между двумя этими крайними точками. А именно, в растворах протекает и химический и физический процесс.

Рис. 1. Сванте Аррениус

В 1887 году шведский физико — химик Сванте Аррениус (Рис. 1), исследуя электропроводность водных растворов, высказал предположение, что в таких растворах вещества распадаются на заряженные частицы – ионы, которые могут передвигаться к электродам – отрицательно заряженному катоду и положительно заряженному аноду.

Это и есть причина электрического тока в растворах. Данный процесс получил название электролитической диссоциации (дословный перевод – расщепление, разложение под действием электричества). Такое название также предполагает, что диссоциация происходит под действием электрического тока. Дальнейшие исследования показали, что это не так: ионы являются только переносчиками зарядов в растворе и существуют в нем независимо от того, проходит через раствор ток или нет. При активном участии Сванте Аррениуса была сформулирована теория электролитической диссоциации, которую часто называют в честь этого ученого. Основная идея данной теории заключается в том, что электролиты под действием растворителя самопроизвольно распадаются на ионы. И именно эти ионы являются носителями заряда и отвечают за электропроводность раствора.

2. Основные положения теории электролитической диссоциации

1. Электролиты в растворах под действием растворителя самопроизвольно распадаются на ионы. Такой процесс называется электролитической диссоциацией. Диссоциация также может проходить при расплавлении твердых электролитов.

2. Ионы отличаются от атомов по составу и свойствам. В водных растворах ионы находятся в гидратированном состоянии. Ионы в гидратированном состоянии отличаются по свойствам от ионов в газообразном состоянии вещества. Это объясняется так: в ионных соединениях уже изначально присутствуют катионы и анионы. При растворении молекула воды начинает подходить к заряженным ионам: положительным полюсом – к отрицательному иону, отрицательным полюсом – к положительному. Ионы называются гидратированными (рис. 2).

Рис. 2

3. В растворах или расплавах электролитов ионы движутся хаотично, но при пропускании электрического тока ионы движутся направленно: катионы – к катоду, анионы – к аноду.

Основания, кислоты, соли в свете теории электролитической диссоциации

В свете теории электролитической диссоциации можно дать определении основаниям, кислотам и солям как электролитам.

Основания – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид анионов: гидроксид-анион: OH-.

NaOH ↔ Na+ + OH−

Диссоциация оснований, содержащих несколько гидроксильных групп, происходит ступенчато:

Ba(OH)2↔ Ba(ОН)+ + OH− Первая ступень

Ba(OH)+ ↔ Ba2+ + OH− Вторая ступень

Ba(OH)2↔ Ba2+ + 2 OH− Суммарное уравнение

Кислоты – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид катионов: H+. Ионом водорода называют именно гидратированный протон и обозначают H3O+, но для простоты записывают H+.

HNO3↔ H+ + NO3−

Многоосновные кислоты диссоциируют ступенчато:

H3PO4↔ H+ + H2PO4- Первая ступень

H2PO4- ↔ H+ + HPO42- Вторая ступень

HPO42-↔ H+ + PO43- Третья ступень

H3PO4↔ 3H+ + PO43-Суммарное уравнение

Соли – это электролиты, диссоцирующие в водных растворах на катионы металла и анионы кислотного остатка.
Na2SO4 ↔ 2Na+ + SO42−

Средние соли – это электролиты, диссоциирующие в водных растворах на катионы металла или катионы аммония и анионы кислотного остатка.

Основные соли – это электролиты, диссоциирующие в водных растворах на катионы металла, гидроксид анионы и анионы кислотного остатка.

Кислые соли – это электролиты, диссоциирующие в водных растворах на катионы металла, катионы водорода и анионы кислотного остатка.

Двойные соли – это электролиты, диссоциирующие в водных растворах на катионы нескольких металлов и анионы кислотного остатка.

KAl(SO4)2↔ K+ + Al3+ + 2SO42

Смешанные соли – это электролиты, диссоциирующие в водных растворах на катионы металла и анионы нескольких кислотных остатков

Сильные и слабые электролиты

Электролитическая диссоциация в той или иной степени – процесс обратимый. Но при растворении некоторых соединений равновесие диссоциации в значительной степени смещено в сторону диссоциируемой формы. В растворах таких электролитов диссоциация протекает практически необратимо. Поэтому при написании уравнений диссоциации таких веществ пишется или знак равенства или прямая стрелка, обозначающая, что реакция происходит практически необратимо. Такие вещества называют сильными электролитами.

Слабыми называются электролиты, в которых диссоциация происходит незначительно. При написании используют знак обратимости. Табл. 1.

Для количественной оценки силы электролита введено понятие степени электролитической диссоциации.

Силу электролита можно охарактеризовать и при помощи константы химического равновесия диссоциации. Называется она константа диссоциации.

Факторы, влияющие на степень электролитической диссоциации:

· Природа электролита

· Концентрация электролита в растворе

· Температура

При увеличении температуры и разбавлении раствора степень электролитической диссоциации увеличивается. Поэтому оценить силу электролита можно, только сравнивания их при одинаковых условиях. За стандарт принята t = 180С и с = 0,1 моль/л.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ

СЛАБЫЕ ЭЛЕКТРОЛИТЫ

Степень диссоциации при 180С в растворах с концентрацией электролита 0,1 моль/л близка к 100%. Диссоциируют практически необратимо.

Степень диссоциации при 180С в растворах с концентрацией электролита 0,1 моль/л значительно меньше 100%. Диссоцииация необратима.

· Щелочи

· Соли

· Некоторые неорганические кислоты (НNO3, HClO4,HI, HCl, HBr, H2SO4)

· Гидроксиды металлов, кроме IA и IIA групп, раствор аммиака

· Многие неорганические кислоты (H2S, HCN, HClO, HNO2)

· Органические кислоты (HCOOH, CH3COOH)

· Вода

Табл. 1

Реакции ионного обмена

Сущность реакции в растворах электролитов выражается ионным уравнением. В нем учитывается тот факт, что в одном растворе электролиты присутствуют в виде ионов. А слабые электролиты и недиссоциируемые вещества записываются в диссоциируемой на ионы форме. Растворимость электролита в воде нельзя использовать как критерий его силы. Многие нерастворимые в воде соли, являются сильными электролитами, но концентрация ионов в растворе оказывается очень низкой именно вследствие их низкой растворимости. Именно потому при написании уравнений реакций с участием таких веществ их принято записывать в недиссоциированной форме.

Реакции в растворах электролитов протекают в направлении связывания ионов.

Существует несколько форм связывания ионов:

1. Образование осадка

2. Выделение газа

3. Образование слабого электролита.

· 1. Образование осадка:

BaCl2 + Na2CO3 → BaCO3↓ + 2NaCl.

Ba2++2Cl- + 2Na++CO32-→ BaCO3↓ + 2Na++2Cl- полное ионное уравнение

Ba2+ + CO32-→ BaCO3↓ сокращенное ионное уравнение.

Сокращенное ионное уравнение показывает, что при взаимодействии любого растворимого соединения, содержащего ион Ba2+, с соединением, содержащим карбонат-анион CO32-, в результате получится нерастворимый осадок BaCO3↓.

· 2. Выделение газа:

Na2CO3 +H2SO4 → Na2SO4 + H2O + CO2

2Na+ + CO32- +2H++ SO42- → 2Na+ + SO42- + H2O + CO2 полное ионное уравнение

2H+ + CO32- → H2O + CO2 сокращенное ионное уравнение.

· 3. Образование слабого электролита:

KOH + HBr → KBr + H2O

K+ + OH- + H+ + Br- → K+ + Br- + H2O полное ионное уравнение

OH- + H+ → H2O сокращенное ионное уравнение.

Рассматривая эти примеры, мы убедились, что все реакции в растворах электролитов происходят в направлении связывания ионов.

Подведение итога урока

В ходе урока мы рассмотрели теорию электролитической диссоциации и познакомились с определением электролитов. Узнали о физической и химической теории растворов. Рассмотрели в свете теории электролитической диссоциации определение оснований, кислот и солей, а также научились составлять уравнения реакций ионного обмена и узнали об условиях необратимости.

Список литературы

3. Габриелян О.С. Химия. 11 класс. Базовый уровень. 2-е изд., стер. – М.: Дрофа, 2007. – 220 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Internerurok.ru (Источник).

2. Hemi.nsu.ru (Источник).

Вычислить степень диссоциации

Вычислить степень диссоциации (α) и равновесную концентрацию ионов водорода () в 0,1 М растворе хлорноватистой кислоты (HClO). Константа диссоциации составляет 5 ∙ 10-8. Как изменится равновесная концентрация ионов водорода (), если к 1 литру 0,1 М раствора хлорноватистой кислоты (HClO) добавить 0,2 моля гипохлорита натрия (NaClO)?

Решение задачи

Перед тем как решить предложенную задачу и вычислить степень диссоциации, думаю, следует напомнить, что степень диссоциации слабого электролита резко снижается при добавлении к нему сильного электролита с одноименным ионом. Если в растворе слабого электролита , диссоциирующего по схеме:

увеличить концентрацию H+-ионов за счет прибавления сильной кислоты или концентрацию ионов A— за счет прибавления соли этой кислоты, это приведет к сдвигу равновесия влево, то есть к уменьшению относительного количества диссоциированных молекул электролита.

Запишем уравнение диссоциации хлорноватистой кислоты (HClO):

Найдем равновесную концентрацию ионов водорода () по формуле:

Вычислим степень диссоциации хлорноватистой кислоты (HClO), используя формулу вычисления степени диссоциации:

Если к 1 л раствора хлорноватистой кислоты (HClO) добавить 0,2 моля гипохлорита натрия (NaClO), то концентрация ионов водорода (H+) уменьшится за счет увеличения концентрации ионов ClO—.

Запишем уравнение диссоциации гипохлорита натрия (NaClO):

Обозначим концентрацию ионов водорода (H+) через х, тогда концентрация ионов ClO— будет равна:

х + αClO— (αClO— – активность ионов ClO—, образовавшихся при диссоциации гипохлорита натрия (NaClO)).

Таблица 1. Приближенные значения средних коэффициентов активности (ƒ) в зависимости от ионной силы (µ) раствора и заряда иона

Подставим эти величины в выражение для константы диссоциации:

откуда:

х2 + 0,14х = 5 ⋅ 10-9.

Так как х2 величина очень маленькая, для упрощения вычислений пренебрегаем ею, тогда:

Кроме константы диссоциации силу электролита можно определить по значению другого параметра, зависящего от концентрации раствора. Таким параметром является кажущаяся степень диссоциации которая показывает долю молекул распавшихся на ионы.

Степень диссоциации ( ) — это отношение числа распавшихся на ионы молекул (Nдис.) к общему числу молекул растворенного вещества (Nобщ.):

(7.6.4.)

Степень диссоциации выражают в долях единицы или в процентах. Поскольку общее число молекул вещества в растворе пропорционально количеству его вещества и его молярной концентрации, то можно записать:

(7.6.5.)

где nдис. и cдис. — соответственно, количество и молярная концентрация растворенного вещества, подвергшегося электролитической диссоциации.

К сильным электролитам условно относят вещества, кажущаяся степень диссоциации которых в растворе превышает 30% ( > 0,3). При  < 3% ( < 0,03) электролиты считают слабыми, в других случаях о них говорят как об электролитах средней силы.

Степень диссоциации обычно определяют по данным измерения электропроводности растворов, которая прямо пропорциональна концентрации свободно движущихся ионов. При этом получают не истинные значения , а кажущиеся значения. Они всегда меньше истинных значений , т.к. ионы при движении к электродам сталкиваются и частично уменьшают свою подвижность, особенно при высокой их концентрации в растворе, когда возникает электростатическое притяжение между ионами. Например, истинное значение степени электролитической диссоциации HCl в разбавленном растворе равно 1, в 1 М растворе  = 0,78 (78%) при 180 С, однако, в этом растворе не содержится 22% недиссоциированных молекул HCl, практически все молекулы диссоциированы.

Электролиты, которые в разбавленном водном растворе диссоциируют практически полностью, называют сильными электролитами.

К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты (H2SO4, HNO3, HClO4, галогеноводородные, кроме HF и др.), гидроксиды s-элементов (исключение — Be(OH)2 и Mg(OH)2). Кажущиеся значения a этих электролитов находятся в пределах от 70 до 100%. Диссоциация сильных электролитов — это практически необратимый процесс:

HCl  H+ + Cl- или HCl = H+ + Cl-

С точки зрения теории электролитической диссоциации кислоты — это вещества, диссоциирующие в водном растворе с образованием катионов водорода и анионов кислотного остатка, основания — это вещества, диссоциирующие в водном растворе с образованием гидроксид-ионов OH- и катионов металла.

Слабые многоосновные кислоты диссоциируют ступенчато. Каждую ступень характеризуют своим значением константы диссоциации, например:

В связи со ступенчатой диссоциацией многоосновные кислоты способны образовывать кислые соли, NaHSO4, NaHCO3, K2HPO4 и т.д.

Слабые многокислотные основания диссоциируют ступенчато:

Этим объясняют способность многокислотных оснований образовывать основные соли: CuOHCl, (ZnOH)2SO4 и др.

Электролиты, которые в разбавленном водном растворе диссоциируют частично, называют слабыми. Диссоциация слабых электролитов — обратимый процесс

например:

 (при 25 С)

HCN  H+ + CN-

7·10-5 (или 0,007%)

0,013 (или 1,3%)

Степень электролитической диссоциации зависит от:

  • природы электролита и растворителя;

  • концентрации раствора;

  • температуры

и возрастает при увеличении разбавления раствора:

C(CH3COOH) , моль/л

0,2

0,1

0,05

0,01

0,005

0,001

 , % (при 25° С)

0,05

1,4

1,9

4,2

6,0

12,4

слабый электролит

электролит средней силы

Степень диссоциации возрастает при увеличении температуры раствора. Увеличение кинетической энергии растворенных частиц способствует распаду молекул на ионы, что приводит к возрастанию степени диссоциации при нагревании растворов.

Если в растворе слабой кислоты или слабого основания увеличить концентрацию одноименного иона введением соответствующей соли, то наблюдается резкое изменение степени диссоциации слабого электролита. Рассмотрим, например, как изменится  уксусной кислоты (CH3COOH) при введении в раствор ацетата натрия (введение одноименных ионов CH3COO-).

Согласно принципу Ле Шателье равновесие процесса диссоциации

сместится влево в результате увеличения концентрации ацетат-ионов CH3COO-, образующихся при диссоциации ацетата натрия:

CH3COONa  CH3COO- + Na+.

Такое смещение равновесия в сторону образования CH3COOH означает уменьшение степени ее диссоциации и приводит к уменьшению концентрации ионов водорода, например:

C(CH3COOH), моль/л

0,01

0,01

C(CH3COONa), моль/л

0,01

, моль/л

4,32·0-4

1,86·10-5

Таким образом, в результате введения в 1 л 0,01 М раствора CH3COOH 0,01 моль CH3COONa концентрация ионов водорода уменьшилась в

1) диссоциация по типу основания:

Be(OH)2 + 3H2O  OH- +

+ H2O  OH- +

2) диссоциация по типу кислоты:

Be(OH)2 + 2H2O  H+ +

 H+ +

        1. Закон разведения Оствальда

          Вильгельм Фридрих Оствальд (2.09.1853,—4.04.1932)— балтийский немец, физико-химик и философ-идеалист, лауреат Нобелевской премии по химии 1909 года. Член-корреспондент Петербургской АН (1895).

Между константой и степенью диссоциации существует определенная закономерность, которую в 1888г.обнаружил В.Оствальд и сумел ее объяснить. Эта закономерность впоследствии была названа законом разведения Оствальда.

Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Kдсвязана спростой зависимостью. Если общую молярную концентрацию электролита в растворе обозначить СКА, то для бинарных электролитов концентрации ионов Ky+и Ax-будут равны·CKA. Очевидно, что

По способности проводить электрический ток в водном растворе или в расплаве, вещества делятся на электролиты и неэлектролиты.

Электролитами называются вещества, растворы или расплавы которых проводят электрический ток. К электролитам относятся соли, кислоты, основания. В молекулах этих веществ имеются ионные или ковалентные сильно полярные химические связи.

Неэлектролитами называются вещества, растворы или расплавы которых не проводят электрический ток. К неэлектролитам относятся, например, кислород, водород, многие органические вещества (сахар, эфир, бензол и др.). В молекулах этих веществ существуют ковалентные неполярные или малополярные связи.

Для объяснения электропроводности растворов и расплавов солей, кислот и оснований шведский ученый С. Аррениус создал теорию электролитической диссоциации (1887 г.):

1.Молекулы электролитов при растворении или расплавлении распадаются на ионы.

Процесс распада молекул электролитов на ионы в растворе или в расплаве называется электролитической диссоциацией, или ионизацией.

Ионы — это атомы или группы атомов, имеющие положительный или отрицательный заряд.

2.В растворе или расплаве электролитов ионы движутся хаотически. При пропускании через раствор или расплав электрического тока, положительно заряженные ионы движутся к отрицательно заряженному электроду (катоду), а отрицательно заряженные ионы движутся к положительно заряженному электроду (аноду). Поэтому положительные ионы называются катионами, отрицательные ионы — анионами.

3.Диссоциация — процесс обратимый. Это значит, что одновременно идут два противоположных процесса: распад молекул на ионы (ионизация, или диссоциация) и соединение ионов в молекулы (ассоциация, или моляризация).

Диссоциацию молекул электролитов выражают уравнениями, в которых вместо знака равенства ставят знак обратимости. В левой части уравнения записывают формулу молекулы электролита, в правой — формулы ионов, которые образуются в процессе электролитической диссоциации. Например:

Каждая молекула нитрата магния диссоциирует на ион магния и два нитрат-иона. Следовательно, в результате диссоциации одной молекулы Mg(NO3)2 образуются три иона.

Общая сумма зарядов катионов равна общей сумме зарядов анионов и противоположна по знаку (так как растворы электролитов электронейтральны).

Механизм электролитической диссоциации. Гидратация ионов

Причины и механизм диссоциации электролитов объясняются химической теорией раствора Д. И. Менделеева и природой химической связи. Как известно, электролитами являются вещества с ионной или ковалентной сильно полярной связями. Растворители, в которых происходит диссоциация, состоят из полярных молекул. Например, вода — полярный растворитель. Диссоциация электролитов с ионной и полярной связями протекает различно. Рассмотрим механизм диссоциации электролитов в водных растворах.

I. Механизм диссоциации электролитов с ионной связью

При растворении в воде ионных соединений, например хлорида натрия NaCl, дипольные молекулы воды ориентируются вокруг ионов натрия и хлорид-ионов. При этом положительные полюсы молекул воды притягиваются к хлорид-ионам Сl—, отрицательные полюсы — к положительным ионам Na+ .

В результате этого взаимодействия между молекулами растворителя и ионами электролита притяжение между ионами в кристаллической решетке вещества ослабевает. Кристаллическая решетка разрушается, и ионы переходят в раствор. Эти ионы в водном растворе находятся не в свободном состоянии, а связаны с молекулами воды, т. е. являются гидратированными ионами.

Диссоциация ионных соединений в водном растворе протекает полностью. Так диссоциируют соли и щелочи: KCl, LiNO3, Ba(OH)2 и др.

II. Механизм диссоциации электролитов, которые состоят из полярных молекул

При растворении в воде веществ с полярной ковалентной связью происходит взаимодействие дипольных молекул электролита с дипольными молекулами воды. Например, при растворении в воде хлороводорода происходит взаимодействие молекул НСl с молекулами Н2O. Под влиянием этого взаимодействия изменяется характер связи в молекуле HCl: сначала связь становится более полярной, а затем переходит в ионную связь. Результатом процесса является диссоциация электролита и образование в растворе гидратированных ионов.

Так диссоциируют кислородсодержащие и бескислородные кислоты: H2SO4, HNO3, НI и др. Диссоциация электролитов с полярной связью может быть полной или частичной. Это зависит от полярности связей в молекулах электролитов.

Таким образом, главной причиной диссоциации в водных растворах является гидратация ионов. В растворах электролитов все ионы находятся в гидратированном состоянии. Например, ионы водорода соединяются с молекулой воды и образуют ионы гидроксония Н3O+ по донорно-акцепторному механизму:

Для простоты в химических уравнениях ионы изображают без молекул воды: Н+ , Ag+, Mg2 +, F—, SO42- и т. д.

Свойства ионов

Ионы по физическим, химическим и физиологическим свойствам отличаются от нейтральных атомов, из которых они образовались. Например, ионы натрия Na+ и хлорид-ионы Сl— не взаимодействуют с водой, не имеют цвета, запаха, неядовиты.

Атомы натрия Na0 энергично взаимодействуют с водой. Вещество хлор C12 в свободном состоянии — газ желто-зеленого цвета, ядовит, сильный окислитель.

Различные свойства атомов и ионов одного и того же элемента объясняются разным электронным строением этих частиц. Химические свойства свободных атомов металлов определяются валентными электронами, которые атомы металлов легко отдают и переходят в положительно заряженные ионы. Атомы неметаллов легко присоединяют электроны и переходят в отрицательно заряженные ионы. Ионы находятся в более устойчивых электронных состояниях, чем атомы.

Ионы имеют различную окраску. Гидратированные и негидратированные ионы s- и р-элементов обычно бесцветны. Так, бесцветны ионы Н+, Na+, K+ , Ва2 +, Аl3+ и др. Ионы некоторых d-элементов имеют окраску. Окраска гидратированных и негидратированных ионов одного и того же d-элемента может быть различной. Например, негидратированные ионы Cu2+ — бесцветные, а гидратированные ионы меди Cu2+ • 4Н2О — синего цвета

Степень диссоциации

В водных растворах некоторые электролиты полностью распадаются на ионы. Другие электролиты распадаются на ионы частично, часть их молекул остается в растворе в недиссоциированном виде.

Число, показывающее, какая часть молекул распалась на ионы, называется степенью электролитической диссоциации (степенью ионизации).

Степень электролитической диссоциации (α) равна отношению числа молекул, которые распались на ионы, к общему числу молекул в растворе:

где n — число молекул, распавшихся на ионы; N — общее число растворенных молекул.

Например, степень диссоциации (α) уксусной кислоты СН3СООН в 0,1 М растворе равна 1,36%. Это означает, что из 10000 молекул СН3СООН 136 молекул распадаются на ионы по уравнению:

Степень диссоциации зависит от природы растворителя и природы растворяемого вещества, концентрации раствора, температуры и других факторов.

Различные вещества диссоциируют в разной степени. Например, муравьиной кислоты НСООН при одинаковых условиях больше α уксусной кислоты СН3СООН.

При уменьшении концентрации электролита, т. е. при разбавлении раствора, степень диссоциации увеличивается, так как увеличиваются расстояния между ионами в растворе и уменьшается возможность соединения их в молекулы.

При повышении температуры степень диссоциации, как правило, увеличивается.

В зависимости от степени диссоциации электролиты делятся на сильные и слабые.

Константа диссоциации (ионизации)

Для характеристики слабых электролитов применяют константу диссоциации (Kд). Вследствие того, что слабые электролиты диссоциируют на ионы не полностью, в их растворах устанавливается динамическое равновесие между недиссоциированными молекулами и ионами. Для слабого электролита общей формулы АnВm уравнение диссоциации имеет вид:

Применяя закон действующих масс, запишем выражение константы равновесия:

где , — равновесные концентрации ионов Аm+ и Bn—, — равновесная концентрация недиссоциированных молекул АnВm.

Константу равновесия в этом случае называют константой диссоциации (Kд), или константой ионизации.

Константа ионизации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем легче электролит распадается на ионы, тем больше ионов в его растворе, тем сильнее электролит. Например:

Следовательно, уксусная кислота СН3СООН более сильный электролит, чем циановодородная кислота HCN.

Для слабого электролита константа диссоциации — постоянная величина при данной температуре, которая не зависит от концентрации раствора. Константа диссоциации зависит от природы электролита, природы растворителя и температуры. Константы диссоциации некоторых слабых электролитов приведены в таблице.

Значение электролитов для живых организмов

Электролиты являются составной частью жидкостей и плотных тканей живых организмов. Ионы натрия Na+, калия K+ , кальция Са2+, магния Mg2+, водорода Н+ , анионы ОН— , Сl—, SO42-, НСО3— имеют большое значение для физиологических и биохимических процессов. Концентрации различных ионов в организме человека различны. Концентрации ионов водорода Н+ и гидроксид-ионов ОН— очень малы, но они играют большую роль в жизненных процессах. Ионы водорода Н+ способствуют нормальному функционированию ферментов, обмену веществ, перевариванию пищи и т.д. Концентрации ионов натрия Na+ и хлорид-ионов Cl— в организме человека весьма значительны. Эти ионы человек получает ежедневно, используя в пищу поваренную соль NaCl. В медицине применяется 0,85%-ный раствор хлорида натрия в качестве физиологического раствора при большой потере жидкости организмом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *