Гипотезы происхождения эукариот

Гипотезы происхождения эукариотических клеток

Следует отметить три гипотезы происхождения эукариотических клеток:

  • симбиотическая гипотеза, или симбиогенез,
  • инвагинационная,
  • химерная.

На сегодняшний день в научном мире основной гипотезой происхождения эукариот признается симбиогенез.

Согласно симбиогенезу такие органеллы эукариотических клеток как митохондрии, хлоропласты и жгутики произошли путем внедрения одних прокариот в другую, более крупную прокариотическую клетку, сыгравшую роль клетки-хозяина.

В симбиотической гипотезе есть трудности при объяснении происхождения ядра эукариотических клеток и в вопросе, какой же все-таки прокариот выступил хозяином. Данные молекулярного анализа генома и белков эукариот показывают, что, с одной стороны, это был организм близкий к археям (раньше относились к бактериям, потом их выделили в отдельную ветвь). С другой стороны, в эукариотах имеются белки (и ответственные за их синтез гены), характерные для совершенной других групп прокариот.

Согласно инвагинационной гипотезе происхождения эукариотических клеток их органоиды образовались путем впячивания цитоплазматической мембраны с последующим отделением этих структур. Образовывались что-то вроде шариков, окруженных мембраной и содержащих внутри цитоплазму и захваченные сюда соединения и структуры. В зависимости от того, что попало внутрь, сформировались разные органоиды.

У прокариот нет настоящих органелл, их функции как раз и выполняют впячивания мембраны. Поэтому легко представить подобное ее отшнуровывание. Также в пользу инвагинационной гипотезы говорит схожесть цитоплазматической мембраны и двойных мембран органелл.

С точки зрения инвагинагенеза происхождение ядра легко объяснимо, но необъяснимо, почему геном и рибосомы ядерно-цитоплазматического комплекса отличаются от таковых в хлоропластах и митохондриях (вспомним, что в них также есть ДНК и рибосомы). Причем в указанных органеллах система биосинтеза белка (ДНК, РНК, рибосомы) схожа с прокариотами.

Это отличие хорошо объяснимо как раз с точки зрения первой, симбиотической, гипотезы. Согласно ей в анаэробный прокариот так или иначе попал аэробный прокариот. Он не переварился, а стал, наоборот, питаться за счет клетки-хозяина. В свою очередь он использовал кислород для получения энергии, а этот способ окисления намного эффективнее, избыток энергии он отдавал хозяину-прокариоту, который в таком случае также получал выгоду. Возник симбиоз. В последствии внедрившийся прокариот упростился, часть его генома мигрировала в клетку-хозяина, он уже не мог существовать независимо.

Подобным образом симбиогенез объясняет происхождение хлоропластов. Только внедрялись уже прокариоты, способные к фотосинтезу (подобные синезеленым водорослям).

Первые эукариоты без фотосинтезирующих симбионтов дали начало животным, у которых они появились — растениям.

В настоящее время существуют простейшие (одноклеточные эукариотические организмы) у которых нет митохондрий или хлоропластов. Зато вместо них в цитоплазме поселяются прокариоты-симбионты, выполняющие соответствующие функции. Этот факт, а также схожесть системы биосинтеза белка митохондрий и пластид с прокариотами рассматриваются как доказательства симбиогенеза. Доказательством также служит то, что митохондрии и хлоропласты размножаются самостоятельно, они никогда не строятся клеткой с нуля.

В пользу третьей, химерной, гипотезы происхождения эукариотических клеток, говорит большой размер их генома, который превосходит бактериальный в тысячи и более раз, а также разнообразие синтезируемых белков, встречающихся в разных группах прокариот. Понятно, что на протяжении эволюции эукариот их геном усложнялся, он удвоился, в нем появилось множество регулирующих генов. Но все же первоначальное увеличение размера генома могло произойти за счет объединения геномов нескольких прокариот.

Возможно в древности некий прокариот приобрел способность к фагоцитозу и, питаясь таким образом, поглощал в том числе других прокариот, которые не всегда переваривались. Их геном содержал полезные для хозяина гены, и он включал их в свой геном. Возможно некоторые из оказавшихся внутри прокариот становились органеллами, что объединяет химерную гипотезу с симбиогенезом.

Поскольку все перечисленные гипотезы имеют сильные и слабые стороны, а также во многом не исключают положения друг друга, то, на наш взгляд, в происхождении структур эукариотических клеток могло сыграть роль сочетание множества факторов, описываемых разными гипотезами.

Следует также отметить, что согласно симбиотической гипотезе происхождение других мембранных органелл таких как вакуоли, комплекс Гольджи и др. можно рассматривать как дальнейшее упрощение, например, митохондрий.

Также отметим, что сочетание в эукариотах белков из разных прокариот вовсе может не указывать на химеризм первых. Возможно, что определенные ферментативные функции могут выполнять только белки конкретного строения. И эволюция эукариот повторно приходила к этому, независимо от эволюции не являющихся их предками групп прокариот. Скажем, происходила конвергенция на молекулярном уровне.

11. Гипотезы происхождения эукариотических клеток (симбиотическая и инвагинационная).

Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукариотических клеток, согласно которой основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот, способный лишь к амебоидному движению. Переход к аэробному дыханию связан с наличием в клетке митохондрии, которые произошли путем изменений симбионтов — аэробных бактерий, проникших в клетку-хозяина и сосуществовавших с ней. Сходное происхождение предполагают для жгутиков, предками которых служили симбионты-бактерии, имевшие жгутик и напоминавшие современных спирохет. Приобретение клеткой жгутиков имело наряду с освоением активного способа движения важное следствие общего порядка. Предполагают, что базальные тельца, которыми снабжены жгутики, могли эволюционировать в центриоли в процессе возникновения механизма митоза. Способность зеленых растений к фотосинтезу обусловлена присутствием в их клетках хлоропластов. Сторонники симбиотической гипотезы считают, что симбионтами клетки-хозяина, давшими начало хлоропластам, послужили прокариотические синезеленые водоросли. Серьезным доводом в пользу симбиотического происхождения митохондрий, центриолей и хлоропластов является то, что перечисленные органеллы имеют собственную ДНК. Вместе с тем белки бациллин и тубулин, из которых состоят жгутики и реснички соответственно современных прокариот и эукариот, имеют различное строение. Центральным и трудным для ответа является вопрос о происхождении ядра. Предполагают, что оно также могло образоваться из симбионта-прокариота. Увеличение количества ядерной ДНК, во много раз превышающее в современной эукариотической клетке ее количество в митохондрий или хлоропласте, происходило, по-видимому, постепенно путем перемещения групп генов из геномов симбионтов. Нельзя исключить, однако, что ядерный геном формировался путем наращивания генома клетки-хозяина (без участия симбионтов). Согласно инвагинационной гипотезе, предковой формой эукариотической клетки был аэробный прокариот. Внутри такой клетки-хозяина находилось одновременно несколько геномов, первоначально прикреплявшихся к клеточной оболочке. Органеллы, имеющие ДНК, а также ядро, возникли путем впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрий, хлоропласты. В процессе дальнейшей эволюции произошло усложнение ядерного генома, появилась система цитоплазматических мембран. ^ Инвагинационная гипотеза хорошо объясняет наличие в оболочках ядра, митохондрий, хлоропластов, двух мембран. Однако она не может ответить на вопрос, почему биосинтез белка в хлоропластах и митохондриях в деталях соответствует таковому в современных прокариотических клетках, но отличается от биосинтеза белка в цитоплазме эукариотической клетки.

12. Клеточный цикл, его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.

Повторяющаяся совокупность событий, обеспечивающих деление эукариотических клеток, получила название клеточного цикла. Продолжительность клеточного цикла зависит от типа делящихся клеток. Некоторые клетки, например, нейроны человека, после достижения стадии терминальной дифференцировки прекращают свое деление вообще. Клетки легких, почек или печени во взрослом организме начинают делиться лишь в ответ на повреждение соответствующих органов. Клетки эпителия кишечника делятся на протяжении всей жизни человека. Даже у быстро пролиферирующих клеток подготовка к делению занимает около 24 ч. Клеточный цикл разделяют на стадии : Митоз — М-фаза, деление клеточного ядра. G1 -фаза период перед синтезом ДНК. S-фаза — период синтеза (репликации ДНК). G2-фаза — период между синтезом ДНК и митозом. Интерфаза — период, включающий в себя G1 -, S- и G2-фазы. Цитокинез — деление цитоплазмы. Точка рестрикции, R-point — время в клеточном цикле, когда продвижение клетки к делению становится необратимым. G0 фаза — состояние клеток, достигших монослоя или лишенных фактора роста в ранней G1 фазе.Делению клетки (митозу или мейозу) предшествует удвоение хромосом, которое происходит в периоде S клеточного цикла. Период обозначают первой буквой слова synthesis — синтез ДНК. С момента окончания периода S до завершения метафазы ядро содержит в четыре раза больше ДНК, чем ядро сперматозоида или яйцеклетки, а каждая хромосома состоит из двух идентичных сестринских хроматид. Во время митоза хромосомы конденсируются и в конце профазы или начале метафазы становятся различимыми при оптической микроскопии. Для цитогенетического анализа обычно используют препараты именно метафазных хромосом. В начале анафазы центромеры гомологичных хромосом разъединяются, и хроматиды расходятся к противоположным полюсам митотического веретена. После того как к полюсам отойдут полные наборы хроматид (с этого момента их называют хромосомами), вокруг каждого из них образуется ядерная оболочка, формируя ядра двух дочерних клеток (разрушение ядерной оболочки материнской клетки произошло в конце профазы ). Дочерние клетки вступают в период G1 , и только при подготовке к следующему делению они переходят в период S и в них происходит репликация ДНК. Клетки со специализированными функциями, длительное время не вступающие в митоз или вообще утратившие способность к делению, находятся в состоянии, называемом периодом G0 . Большинство клеток в организме диплоидные — то есть имеют два гаплоидных набора хромосом (гаплоидный набор — это число хромосом в гаметах, у человека он составляет 23 хромосомы, а диплоидный набор хромосом — 46). В гонадах предшественники половых клеток сначала претерпевают ряд митотических делений, а затем вступают в мейоз — процесс образования гамет, состоящий из двух последовательных делений. В мейозе гомологичные хромосомы спариваются (отцовская 1-я хромосома с материнской 1-й хромосомой и т. д.), после чего в ходе так называемого кроссинговера происходит рекомбинация, то есть обмен участками между отцовской и материнской хромосомами. В результате качественно изменяется генетический состав каждой из хромосом. В первом делении мейоза расходятся гомологичные хромосомы (а не сестринские хроматиды, как в митозе), вследствие чего образуются клетки с гаплоидным набором хромосом, каждая из которых содержит по 22 удвоенные аутосомы и одной удвоенной половой хромосоме. Между первым и вторым делениями мейоза нет периода S, а в дочерние клетки во втором делении расходятся сестринские хроматиды. В итоге образуются клетки с гаплоидным набором хромосом, в которых вдвое меньше ДНК, чем в диплоидных соматических клетках в периоде G1, и в 4 раза меньше — чем в соматических клетках по окончании периода S. При оплодотворении число хромосом и содержание ДНК у зиготы становится таким же, как в соматической клетке в периоде G1. Период S в зиготе открывает путь к регулярному делению, характерному для соматических клеток. Митоз (от греч. mitos — нить) — деление ядра, следующее за репликацией хромосом, в результате чего дочерние ядра содержат то же число хромосом, что и родительские. Митоз имеет сложный механизм, включающий несколько фаз, необходимость которого возникла в процессе эволюции тогда, когда появились клетки с резко увеличенным количеством ДНК, упакованной в отдельные хромосомы. Процесс митоза составляют: профаза, прометафаза, метафаза, анафаза и телофаза. Профаза. В начале профазы многочисленные цитоплазматические микротрубочки, входящие в состав цитоскелета, распадаются; при этом образуется большой пул свободных молекул тубулина. Эти молекулы вновь используются для построения главного компонента митотического аппарата — митотического веретена. Каждая пара центриолей становится частью митотического центра, от которого лучами расходятся микротрубочки (фигура «звезда»). Вначале обе звезды лежат рядом около ядерной мембраны. В поздней профазе пучки полюсных микротрубочек, взаимодействующие друг с другом (и видимые в световой микроскоп как полюсные нити), удлиняются и как будто расталкивают два митотических центра друг от друга вдоль наружной поверхности ядра. Таким способом образуется биполярное митотическое веретено. ^ Вторая стадия митоза — прометафаза начинается с быстрого распада ядерной оболочки на мелкие фрагменты, неотличимые от фрагментов цитоплазматического ретикулума. Эти фрагменты остаются видимыми около веретена. В клетках млекопитающих прометафаза занимает 10-20 минут. Расположенное около ядра митотическое веретено может теперь проникнуть в ядерную область. В хромосомах с каждой стороны центромеры образуются особые структуры — кинетохоры. Обычно у каждой хромосомы оказывается по одной кинетохорной нити, связанной с каждым из полюсов. В результате этого возникают две противоположно направленные силы, которые и приводят хромосому в экваториальную плоскость. Таким образом, беспорядочные прометафазные движения хромосом и их случайная окончательная ориентация обеспечивает случайную сегрегацию хроматид между дочерними клетками, столь важную в мейозе. ^ Третья стадия митоза — метафаза часто продолжается длительное время. Все хромосомы располагаются таким образом, что их центромеры лежат в одной плоскости (метафазная пластинка). Метафазные хромосомы удерживаются в обманчиво статичном состоянии сбалансированными полярными силами. За ориентацию хромосом перпендикулярно оси митотического веретена и расположение их на равном расстоянии от обеих полюсов веретена, скорее всего, ответственны кинетохорные нити. Вероятно, такое расположение хромосом в метофазной пластинке обусловлено способом создания тянущей силы в митотическом веретене: этот способ таков, что сила, действующая на кинетохорные нити тем слабее, чем ближе к полюсу находятся кинетохоры . см. метафаза 1 и 2. Каждая хромосома удерживается в метафазной пластинке парой кинетохоров и двумя пучками связанных с ними нитей, идущих к противоположным полюсам веретена. Метафаза резко оканчивается разделением двух кинетохоров каждой хромосомы. ^ Четвертая стадия митоза — анафаза продолжается обычно всего несколько минут. Анафаза начинается внезапным расщеплением каждой хромосомы, которое обусловлено разделением сестринских хроматид в точке их соединения в центромере. Это расщепление, разделяющее кинетохоры , не зависит от других событий митоза и происходит даже в хромосомах, не прикрепленных к митотическому веретену; оно позволяет полярным силам веретена, действующим на метафазную пластинку, начать перемещение каждой хроматиды к соответствующим полюсам веретена со скоростью порядка 1 мкм/мин. Во время этого анафазного движения кинетохорные нити укорачиваются по мере того, как хромосомы приближаются к полюсам. Примерно в это же время удлиняются нити митотического веретена и два полюса веретена расходятся еще дальше. Далее см. Митоз: движение хромосом в анафазе Клеточная стадия, на которой хромосомы расходятся к двум полюсам новых дочерних клеток. ^ В пятой заключительной стадии митоза телофазе разделенные дочерние хроматиды подходят к полюсам, кинетохорные нити исчезают. После удлинения полюсных нитей вокруг каждой группы дочерних хроматид образуется новая ядерная оболочка. Конденсированный хроматин начинает разрыхляться, появляются ядрышки, и митоз заканчивается. Пролиферация. Основной способ деления тканевых клеток — это митоз. По мере увеличения числа клеток возникают клеточные группы, или популяции, объединенные общностью локализации в составе зародышевых листков (эмбриональных зачатков) и обладающие сходными гистогенетическими потенциями. Клеточный цикл регулируется многочисленными вне- и внутриклеточными механизмами. К внеклеточным относятся влияния на клетку цитокинов, факторов роста, гормональных и нейрогенных стимулов. Роль внутриклеточных регуляторов играют специфические белки цитоплазмы. В течение каждого клеточного цикла существуют несколько критических точек, соответствующих переходу клетки из одного периода цикла в другой. При нарушении внутренней системы контроля клетка под влиянием собственных факторов регуляции элиминируется апоптозом, либо на некоторое время задерживается в одном из периодов цикла.

Гипотезы происхождения эукариотических клеток.

До настоящего времени не предложено непротиворечивой гипотезы происхождения клеток эукариотического типа. Тем не менее, среди биологов признанием пользуются две гипотезы: аутогенная и симбиотическая.

Аутогенный путь происхождения эукариот предполагает развитие сети внутренних мембран в крупной прокариотической клетке путем впячивания наружной плазматической мембраны. Эта гипотеза хорошо согласуется с данными о динамической непрерывности клеточных мембран, с гипотезой о монофилии эукариотических организмов, опирается на хорошо аргументированный механизм внутренней дифференцировки клетки на компартменты. В остальном же, аутогенная гипотеза оказывается спорной или неприемлемой.

Симбиотическую гипотезу сформулировала в 1970 году Л. Маргелис, и с тех пор представление об эукариотах как организмах комплексного происхождения широко распространилось в среде биологов. Последовательность событий здесь предложена в следующем виде. Крупная амебовидная гетеротрофная прокариотическая клетка, получающая энергию путем анаэробного окисления органических веществ, на определенном этапе включает мелкую аэробную бактерию – предшественник митохондрии, что в условиях дефицита кислорода оказывается выгодным энергетически; возникает клетка животного типа, захватывающая спирохетоподобные прокариотические клетки, дающие начало жгутикам. Наконец, внедрение в жгутиковую аэробную клетку прокариот, клеток подобных современным цианобактериям, приводит к появлению автотрофной эукариотической клетки.

Симбиотическая гипотеза лучше объясняет происхождение митохондрий и пластид, окруженных двойными мембранами и имеющих, как и бактерии, кольцевые ДНК и рибосомы прокариотного типа. Она сравнительно хорошо экологически обоснована. Размножение энергетических органоидов вне зависимости от фазы жизни клетки также согласуется с представлениями о комплексности первичных эукариот. В то же время, нельзя выводить жгутики эукариот из спирохетоподобных бактерий. Не укладывается в гипотезу и то, что митохондрии и хлоропласта не вполне автономны и находятся, отчасти, под контролем ядерных генов. Требует доказательств и повышенное содержание кислорода в цитоплазме амебоидного прокариота, без чего симбиоз с аэробным организмом теряет смысл.

Аутогенная и симбиотическая гипотезы, при всей их противоположности, имеют весомые аргументы в свою пользу и, учитывая это, можно было бы принять к рассмотрению гибридную гипотезу, вбирающую в себя положительные элементы каждой из них. В этом случае мы получили бы следующую картину. На ранних этапах биологического этапа эволюции биосферы существовали различные по биоэкологическим свойствам группы прокариот. Среди них наиболее “полезными” на перспективу свойствами обладали автотрофные неподвижные и пассивно подвижные прокариоты близкие к цианобактериям, гетеротрофные пассивно подвижные аэробные бактерии и крупные активно подвижные амебообразные прокариоты. Последняя группа обладала хорошо развитым цитоскелетом и эластичным покровом, но окислительные процессы у ее представителей шли по гликолитическому пути. Способность подобных клеток к активному движению граничит со способностью активно воздействовать на внешнюю среду и в меньшей степени зависеть от наличных условий. Высокая информационная емкость крупной подвижной клетки должна была реализоваться как через усложнение генетического аппарата, так и через внутреннюю дифференцировку. Несколько хромосом, прикрепленных к мембране в клетке с подвижным цитоскелетом и изменчивой формой, требуют компактного размещения и относительной изоляции от других структурных элементов. Немаловажной для нее была бы и возможность обеспечения процессинга мРНК. При названных условиях, клетка – предшественник эукариотической клетки должна была иметь несколько фрагментов ДНК, удерживаемых в глубоком впячивании наружной мембраны, основные мембранные органоиды, обеспечивающие фагоцитарный способ питания и сравнительно хорошо развитый цитоскелет.

Развитие симбиоза с аэробными гетеротрофами могло бы вызвать революцию в биосфере, так как непосредственное обеспечение цитоскелета макроэргическими соединениями дает мощный толчок к совершенствованию движения и механического воздействия на абиотическую и остальную биотическую часть локальных биогеоценозов, а в сумме всей глобальной экосистемы Земли. Но такой симбиоз требует общего повышения содержания кислорода во внешней среде. В этой связи дополнительные аргументы дает гипотеза функционального замещения пероксисом митохондриями. Поэтому одновременно должны были развиться и иные варианты симбиоза: — прокариот без клеточной стенки с фотоавтотрофными и аэробными гетеротрофными прокариотами, которые в последствии приобрели углеводные оболочки; — гетеротрофных анаэробных прокариот с аэробными гетеротрофами, которые приобрели хитиноидную клеточную стенку. Жгутики эукариот развиваются из цитоскелета и потому не требуют симбиогенного объяснения. Принятие обозначенной последовательности постулирует независимое происхождение клеток растительного, грибного и животного типов.

Уже с начальных этапов своего становления биосфера представляет единство активной (живое состояние вещества) и пассивной (неживое состояние вещества) подсистем. Ее развитие изначально определяется интенсивностью взаимодействия этих подсистем. Но живое вещество, представленное одноклеточными телами, не способно активно трансформировать даже непосредственно прилежащую среду для извлечения из нее новых порций вещества и энергии. Поэтому на определенном этапе эволюции биосферы появляются многоклеточные бестканевые и талломные, а позже и тканевые живые тела. Обладая способностью к ростовому и активному движению, они способствуют резкому расширению и ускорению биогенного круговорота веществ, потока энергии и наращиванию объема информации.

Гипотезы происхождения многоклеточности.

Рассмотрению подлежат четыре гипотезы, устанавливающие разные переходные формы между протистами и низшими многоклеточными организмами:

— гипотеза «гастреи» Э. Геккеля;

— гипотеза «фагоцителлы» И.И. Мечникова;

— гипотеза «сидячей колонии» А.А. Захваткина;

— гипотеза «целлюряризации» И. Хаджи.

Первые три гипотезы связывают возникновение истинно многоклеточных организмов с колониальными жгутиконосцами, а последняя – с многоядерными инфузориями.

Геккель считал, что шаровидная колония жгутиконосцев с одним слоем клеток могла, подобно тому, как это происходит с бластулой многоклеточных животных, впячиванием образовывать живые тела, эволюционное развитие которых привело к появлению низших многоклеточных с двуслойной организацией (подобных кишечнополостным).

Гипотеза Мечникова отличается от предыдущей лишь тем, что образование внутреннего слоя клеток шло не путем впячивания наружного пласта, а путем заползания пищеварительных клеток внутрь колонии. Такие клетки были названы фагоцитами, их скопление – фагоцитобластом, а переходная форма – фагоцителлой. По строению и образу жизни гипотетическую форму должны напоминать личинка современных губок и кишечнополостных и животные, выделяемые в тип Пластинчатые.

По мнению А.А. Захваткина, переходная форма должна быть сходной не с личинками современных многоклеточных, а с их взрослыми формами. Поэтому, считает он, у гипотетического предка имелись черты современных губок, а начало ему дали колониальные сидячие жгутиконосцы.

С так называемыми «колониальными» жгутиконосцами, сходными с видами рода Вольвокс, связывается и происхождение многоклеточных растений.

Гипотеза «целлюряризации» основывается на таких явлениях как полимеризация органоидов и сложная дифференцировка цитоплазмы у инфузорий, а также образование поколения клеток при делении многоядерного плазмодия. Обособление разнородных участков цитоплазмы инфузории вокруг ядер с образованием наружных разделяющих мембран, по мнению Хаджи, может сразу привести к образованию трехслойных многоклеточных, близких к Плоским червям.

Для того чтобы оценить каждую из гипотез, надо, прежде всего, сформировать собственное представление о сути проблемы. Когда мы пытаемся разобраться в эволюционной цепи «клетка – многоклеточное тело», невозможно обойти такие вопросы: был ли единый предок для всех многоклеточных живых тел?; что происходит сначала – дифференцировка клеток или умножение числа однородных элементов (клеток) живого тела?

В разделе «Живые тела» мы условились вкладывать разное содержание в понятия «колония клеток» (у прокариот и протистов), «многоклеточное талломное тело» (у грибов и низших растений), «многоклеточное бестканевое тело» (у Пластинчатых и Губок) и «истинно многоклеточное (тканевое) тело» (у сосудистых растений и эуметазоев). Следовательно, нам предстоит выяснить происхождение талломных, бестканевых и тканевых многоклеточных тел.

Анализ жизненных циклов современных Простейших показывает со всей очевидностью, что в большинстве систематических групп в процессе эволюции развивается тенденция к формированию аналогов многоклеточности, то есть к умножению однородных ценотически активных элементов в пределах одиночных жизненных циклов. При этом имеют место все мыслимые направления такой тенденции. А именно: умножение числа хромосомных групп в ядре – высокоплоидные ядра; умножение числа одинаковых ядер в клетке, в том числе и полиплоидных ядер – многоядерные клетки; умножение числа одиночных ценотически активных клеток – бесполое размножение; умножение числа ценотически активных клеток с образованием псевдоплазмодия – по форме – образование многоклеточного тела; умножение числа ценотически активных клеток с образованием простых (недифференцированных) колоний – образование многоклеточного тела как компактного скопления множества одинаковых клеток; умножение числа, ценотически активных клеток с образованием сложной (с частичной дифференцировкой клеток) колонии, объединенной в единое многоклеточное тело.

В ряде случаев встречается образование истинных плазмодиев из агрегатов одноклеточных особей. В то же время имеет место и противоположный процесс – образование клеток-особей из плазмодиев и многоядерных клеток.

Часто жизненные циклы Простейших организованы сложно и включают несколько разнородных поколений, но ценотически активные поколения, даже если их более одного, представлены одинаковыми жизненными формами клеток. Если в жизненном цикле появляются последовательно или одновременно различные жизненные формы клеток, помимо основных, то они не являются ценотически активными особями, а представляют собой вспомогательные (покоящиеся, инвазионные, транспортирующие и др.) или половые, ценотически пассивные особи, или их состояния, фазы. В этом случае, наиболее существенной характеристикой Простейших будет способность формировать только однородные ценотически активные видоспецифичные клетки, то есть клетки одной жизненной формы. Соответственно, для тканевых многоклеточных будет определяюще важной способность к развитию различных морфофункциональных типов ценотически активных клеток на этапе гистогенеза, каждый из которых комплементарен к сумме остальных. Строго говоря, и Простейшие, и Многоклеточные способны формировать клетки одинаковых жизненных форм, но у первых жизненная форма ценотически активных клеток будет одной из видовых характеристик, а у вторых видовой характеристикой будет служить жизненная форма ценотически активной части тела или фазы, или особи организма, составленной из групп клеток разных жизненных форм.

Что касается гипотез происхожения многоклеточности, то их слабость состоит в том, что каждая из них постулирует уникальность какого-либо одного из предполагаемых путей усиления функциональной активности, с одновременным установлением монофилии многоклеточных. Логичнее было бы допустить, что все тенденции к полимеризации активных структур равноценны и, признавая возможность развития многоклеточности на основе одного из них, мы автоматически обязаны признать такую возможность и для каждого из остальных, что означает допустить полифилетическое происхождение многоклеточности. Не исключено также, что появление предков многоклеточных животных и растений не следует связывать с колониальными одноклеточными. Принцип морфофункциональной дивергенции клеток должен быть основополагающим в этом процессе: только он обеспечивает неизбежность и целесообразность взаимозависимости клеток разных жизненных форм друг от друга.

Итак, ни «гастрея», ни «фагоцителла», ни «сидячая колония», ни «многоядерные инфузории» не могут в достаточной степени универсально или, хотя бы, удовлетворительно объяснить причину, механизм и путь возникновения истинной многоклеточности. Устанавливаемые же гипотетические формы выводятся из ценотически пассивных форм, а это требует признания возможности сальтационной смены ценотической активности целых этапов онтогенеза организма.

Интересная идея содержится в гипотезе Г.А. Югая: возникновение многоклеточности связывается с необходимостью выноса избыточной информации на надклеточный уровень организации живого вещества. Развивая данное предположение, можно уточнить, что избыточность информации сопряжена с мощным потоком внешней биоценотической информации, выражающейся в дефиците функции в сообществе в период становления вертикальной структуры биосферы. Именно потребности систмы могли вызвать вынос жизненной формы на надклеточный уровень, где морфофункциональная дифференцировка клеток способна дать широкий спектр новых жизненных форм, отсутствующих у одноклеточных, для более мощного воздействия на внешнюю среду.

Вполне можно согласиться с утверждением, что одноклеточные организмы появились раньше многоклеточных. Но такая последовательность связана не с постепенным развитием «более совершенных форм»: одноклеточные и многоклеточные – не разные уровни совершенства, а вершины разных ветвей специализации. Одноклеточные совсем не проиграли в борьбе за существование – их суммарная биомасса составляет более половины всего живого вещества биосферы. Последовательность становления: одноклеточные прокариоты, одноклеточные эукариоты, многоклеточные эукариоты – определяется последовательностью развития новых уровней биосферы, соответственно требованию усиления функций при ее расширенном воспроизводстве.

К истинно многоклеточным организмам следует относить организмы, тела которых составлены из большого числа клеток, дифференцированных на различные ценотически активные морфофункциональные типы. С такой оговоркой из числа (истинно) многоклеточных мы выводим водоросли, грибы, лишайники, печеночники и, даже, мхи, оставляя сосудистые растения и эуметазои.

Гипотетические переходные формы, при ближайшем рассмотрении, оказываются не вполне одинаковыми. Так, сидячие жгутиконосцы в гипотезе Захваткина – это типичные животные клетки, а «колониальные» жгутиконосцы рода Вольвокс формируют растительное талломное тело (их клетки связаны плазмодесмами). Представляется неправомерным выводить происхождение многоклеточных животных из аналога современного талломного растительного живого тела.

Учитывая сказанное, становление многоклеточности у грибов, растений и животных следует связывать с разными предковыми формами.

Многоклеточные талломные тела грибов и растений сформировались в результате сочетания линейного и плоскостного разрастания клеток соответствующих типов и незавершенного их митотического деления (без завершения цитокинеза). Здесь реализовался характерный для таких тел ростовой способ движения в однородном непрерывном субстрате без смены характера ценотической активности.

Становление тканевой организации у растений шло от пассивно подвижных одноклеточных водорослей-обрастателей через талломный тип, а колониальный тип организации фитомастигин следует считать параллельной ветвью. Ткани растений – это лишь значительно усложненный таллом, в котором дифференцировка клеток достигается в основном видоизменениями оболочки и пластид.

Развитие многоклеточности у животных, предположительно, шло тремя независимыми путями, но всегда было связано с выделением из полифункционального целого олиго- или монофункциональных частей, сохранявших взаимозависимость и надклеточную, корпоративную целостность. Установление в качестве предковой формы для животных-паразоев примитивных зоомастигин с колониальным типом организации не объясняет развития обратимой морфо-функциональной дифференцировки клеток-особей на два основных типа: амебоидный пищеварительный и жгутиковый двигательный.

Появление у животных многоклеточности с тканевым типом организации могло определяться двумя механизмами: 1) исходной дифференцировкой клеток на покровные и нервные через специализацию на уровне клеток и одновременно покровных на покровно-пищеварительно-двигательные и покровно-двигательные через специализацию на уровне частей клеток; 2) исходной необратимой дифференцировкой на пищеварительные, двигательные, покровные и нервные на уровне клеток. Первый путь становления эуметазоев должен был привести к линии, заканчивающейся двуслойными, а второй – к линии трехслойных. В отличие от паразоев здесь совершенствуются не наружные двигательные структуры цилиарного типа (характерные для подгонятелей и фильтраторов), а внутренние сократимые комплексы (характерные для активно подвижных) и клеточные мембраны.

В заключение отметим, что в большинстве групп многоклеточных животных обнаруживается, как одно из направлений специализации, образование синцитиев. Это, впрочем, не дает повода выстраивать эволюционную линию Простейших из Многоклеточных через синцитии и плазмодии, как и наоборот, но показывает сходные способы усиления функции через однонаправленные процессы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *