Биохимические методы консервирования

Биохимические методы консервирования — квашение, соление и мочение (ациодоценоанабиоз) — это разные названия в принципе одного и того же способа переработки продуктов. В основе этого способа лежит молочнокислое брожение сахаров, в результате которого образуется молочная кислота. Последняя препятствует жизнедеятельности вредных микроорганизмов, способных вызвать порчу. Разница же в названиях объясняется тем, что раньше капусту и свеклу заквашивали обычно без соли (из-за ее дефицита), и назвали такую обработку квашением, а все прочие овощи квасили с добавлением соли. Переработку ягод и плодов, достаточно кислых в свежем виде, назвали мочением.

Молочнокислые бактерии относятся к группе факультативных анаэробов: для их жизнедеятельности не нужен кислород. При брожении в отсутствие воздуха, когда многие другие виды микробов (аэробов) не могут развиваться, молочнокислые бактерии из каждой молекулы сахара образуют 2 молекулы молочной кислоты:

С6Н12О6 2СН3*СНОН*СООН.

Никаких других побочных продуктов брожения при этом не образуется. Поэтому капуста, огурцы, яблоки и т.д., заквашенные в плотно закрытой таре, получаются, как правило, лучшего качества.

Дрожжи при квашении образуют небольшое количество спирта и углекислоты. Спирт соединяется с кислотами, в результате чего получают новые химические соединения — эфиры, которые придают квашеным овощам специфический приятный аромат. Но одновременно могут действовать и другие, например уксуснокислые, бактерии, которые способны превратить спирт в уксусную кислоту, и некоторые иные соединения, в результате чего вкус квашеной продукции иногда изменяется в худшую сторону.

Кроме того, в овощах, особенно при высоких температурах (выше 25 ºС), развиваются вредные маслянокислые бактерии, образующие масляную и муравьиную кислоты. Это придаст овощам прогорклый вкус. Развитие гнилостных бактерий и плесени очень быстро вызывает общую порчу продукции.

Для переработки необходимо использовать только здоровые овощи и плоды, без признаков порчи, так как во всех очагах повреждений обычно скапливается огромное количество всевозможных микробов.

Иногда при подготовке к брожению или при укладке в тару в овощи добавляют так называемые закваски, т.е. чистые культуры активных видов молочнокислых бактерий, выращиваемые в специальных лабораториях. Благодаря этому создается численный перевес полезных для процессов микроорганизмов, которые при этом размножаются быстрее по сравнению с другими видами.

Оптимальная температура для молочнокислых бактерий — 34-40 ºС, но такие температуры благоприятны и для вредных микроорганизмов, в т.ч. маслянокислых. Поэтому квашение целесообразно проводить при более низких температурах — 15-25 ºС. При этой температуре молочнокислые бактерии будут действовать медленнее, но маслянокислые и другие вредные микробы развиваться не будут. При температурах ниже 15 ºС молочнокислое брожение значительно тормозится. Хранят эти продукты при температуре 0-4 ºС. Содержание молочной кислоты в продуктах квашения достигает 0,7-1,8 %.

Поваренная соль, используемая при солении и квашении в количестве 2-6 %, вызывает плазмолиз растительных клеток, способствует переходу в рассол клеточного сока, богатого сахаром, и тем самым стимулирует процессы брожения. Кроме того, она подавляюще действует на многие микроорганизмы, в т.ч. маслянокислые бактерии и бактерии группы coli. Соль участвует в формировании вкуса. Активность процесса брожения также зависит от начального содержания сахара в продукте.

Биохимические методы консервирования

Одним из наиболее распространенных способов получения консервированных продуктов является их биохимическая обработка (квашение, соление, мочение). По мнению профессора Б.Л. Флауменбаума, принципиальной разницы между ними нет. В зависимости от вида консервируемого сырья процесс называют квашением (капусты), солением (огурцов, томатов, арбузов и др.) или мочением (яблок, груш, слив).

Квашение — консервирование плодов, овощей и грибов молочной кислотой, образующейся в результате сбраживания сахаров продукта молочнокислыми бактериями. Образующаяся молочная кислота уже в концентрации 0,5 % тормозит развитие многих вредных микроорганизмов, но не задерживает развитие дрожжей и плесеней, а свыше 1 % — прекращается действие молочнокислых бактерий.

Одновременно с образованием молочной кислоты в квашеных овощах накапливается этиловый спирт, который также оказывает консервирующее действие. В квашеной капусте и солёных огурцах количество его не превышает 0,5-0,7 %, что не препятствует развитию молочнокислых бактерий, но заметно улучшает вкус готовой продукции. В мочёных яблоках содержание его достигает 0,8-1,8 %.

Поваренная соль, используемая при солении и квашении, в количестве 2-6 % вызывает плазмолиз растительных клеток, способствует переходу в рассол клеточного сока, богатого сахаром и тем самым стимулирует процессы брожения. Кроме того, она подавляюще действует на многие микроорганизмы, прежде всего, на маслянокислые бактерии и группы Е. coli. Соль также участвует в формировании вкуса квашеных овощей.

Активность процесса брожения зависит от начального содержания сахара в продукте, концентрации соли, температуры окружающей среды и вида молочнокислых микроорганизмов. Температуру брожения поддерживают от 18 до 25оС. В дальнейшем заквашенный продукт хранят при более низких температурах (от 0 до 2оС) в анаэробных условиях, чтобы предупредить развитие уксуснокислых бактерий и плесеней, на которые не влияет молочная кислота.

Для улучшения качества квашеных продуктов, ускорения процесса брожения и предупреждения развития вредных микроорганизмов применяют чистые культуры молочнокислых бактерий.

Комбинированные методы консервирования

К таким методам консервирования относят копчение. Этот способ обработки мясных или рыбных продуктов дымом, получаемом при неполном сгорании древесины, с целью повышения стойкости изделий при последующем хранении и придании им особых вкусовых свойств. Копчение можно рассматривать и как сушку, т.к. в результате испарения воды происходит обезвоживание продукта. Консервирующее действие оказывает при этом и поваренная соль, если она используется для обработки продуктов перед копчением.

Состав дыма зависит от способа получения и породы сжигаемой древесины. Наилучшими технологическими свойствами отличается коптильный дым, получаемый при неполном сгорании древесины лиственных пород. Коптильные вещества дыма обладают бактерицидным действием, являются хорошими антиокислителями, характеризуются специфическими вкусом и ароматом. Коптильный дым — это сложная по составу дисперсная система типа аэрозоля. Дисперсионной средой является парогазовая смесь, а дисперсная фаза представлена частицами жидких и твёрдых веществ — продуктов неполного сгорания древесины. В дыме содержится формальдегид, фурфурол, метиловый спирт, многие кислоты (муравьиная, уксусная, пропионовая, масляная, валериановая), ацетон и другие кетоны, фенолы и метиловые эфиры, различные смолы и др.

Процесс копчения происходит в две фазы: осаждение коптильных веществ на поверхности и последующий перенос их к центральной части продукта. Глубина их проникновения зависит от продолжительности и температуры копчения, свойств и состояния продукта и некоторых других факторов.

Бактерицидный эффект коптильных веществ обусловлен, главным образом, формальдегидом, содержащимся в дыме в значительном количестве. Наибольшей антиокислительной активностью отличаются фенольные компоненты дыма — производные пирогаллола, пирокатехина.

Вкус и аромат копчёных изделий обусловлен наличием в коптильном дыме органических кислот, ароматических альдегидов и кетонов, фенолов и некоторых других соединений. Изменение цвета продукта при копчении связано, с одной стороны, с осаждением окрашенных компонентов дыма на поверхности, а с другой,- с химическим взаимодействием коптильных веществ друг с другом, с составными частями продукта или кислородом воздуха; при этом происходят реакции меланоидинообразования, конденсации, полимеризации и окисления.

В зависимости от режима различают копчение горячее (при температуре выше 80оС) и холодное (при температуре до 40оС).

Горячее копчение применяют при изготовлении варёных колбасных изделий, некоторых рыбных продуктов. Продолжительность обработки зависит от диаметра колбасных батонов и температуры дыма (60-110оС) и колеблется в среднем от 40 минут для сосисок, до 2 часов для варёных колбас большого диаметра. В результате сравнительно недолгого времени копчения в изделие попадает немного коптильных веществ, и они проникают на небольшую глубину. Продукты горячего копчения содержат много воды, имеют ограниченный срок реализации и должны храниться при низких температурах.

Холодное копчение используют при производстве сырокопчёных изделий из мяса и солёной рыбы. В этом случае продолжительность обработки длится от одних до нескольких суток при температуре 18-22оС. Изделия за длительное время копчения обезвоживаются, и содержание влаги в них не превышает 60%. Хранят сырокопчёные изделия несколько месяцев.

Помимо горячего и холодного копчения в пищевой промышленности применяют электростатическое и бездымное (жидкостное) копчение. Принцип электростатического копчения состоит в том, что продукт помещают в электрическое поле высокого напряжения, присоединив его к положительному электроду, и подвергают воздействию ионизированного дыма. Отрицательно заряженные частицы дыма движутся по направлению к положительному электроду и осаждаются на поверхности продукта (грудинка, корейка, окорок, колбасы, рыба и т.д.). Тонкодисперсные продукты коптильного дыма диффундируют в массу продукта, в результате чего он приобретает специфичные аромат и вкус копчения. Процесс электрокопчения при средней плотности дыма проходит быстро — всего за 2-5 минут. Однако существенными недостатками этого способа являются низкие вкусовые качества копчёных изделий, сложность оборудования, наличие токсичных веществ в продукте. Поэтому этот способ копчения широко не применяется.

Сущность «бездымного», или «жидкостного копчения» состоит в том, что коптильные препараты вводят в продукт при посоле либо наносят на его поверхность разбрызгиванием или распылением. Коптильные препараты почти не содержат вредных для организма человека веществ, находящихся в коптильном дыме, например, 3,4-бензпирена, и не обладают токсичным действием. Как правило, эти препараты представляют собой водные конденсаты компонентов дыма. Их подвергают различной обработке (отгону, нейтрализации, селективному экстрагированию) и получают коптильную жидкость (водный раствор) или препарат (вязкую жидкость, порошок). Перед употреблением коптильные препараты разводят водой в соотношении 1:7 или 1:9. Обрабатывают продукт путём погружения их в раствор коптильной жидкости на 10-50 секунд. Иногда используют комбинированный способ копчения. При этом продукт, предварительно обработанный коптильным препаратом, дополнительно подкапчивают дымом.

Коптильные препараты позволяют ускорить выработку копчёных изделий, однако они не обеспечивают полностью того аромата, вкуса и цвета, которые имеют продукты, копчёные дымом. Кроме того, эти препараты оказывают более слабое бактерицидное и антиокислительное действие.

К продуктам комбинированного консервирования относят также пресервы. Этот особый вид рыбных консервов, герметически укупоренных, но не стерилизованных. Консервирующий эффект в пресервах достигается совместным действием различных факторов: соления, маринования, действием фитонцидов пряностей и др. Иногда для повышения стойкости пресервов в них добавляют бензойнокислый натрий. Готовят их из мелкой свежей или солёной рыбы: кильки, салаки, сельди и др. Содержание соли в пресервах колеблется в пределах 6-12 %, а кислотность — 0,6-1,2 %. Пресервы имеют ограниченный срок реализации и должны храниться при пониженных температурах.

Обобщая вышеизложенный материал необходимо отметить, что физико-химические и биохимические изменения, происходящие с продуктами питания в результате их консервирования, целесообразно оценить с точки зрения изменения пищевой и биологической ценности, поскольку они оказывают решающее влияние на структуру (консистенцию), внешний вид, вкус и аромат. В результате технологической обработки происходят потери: обязательные (очистка, жиловка, мойка и т.д.); неизбежные (стерилизация, варка и т.д.) и случайные (при нарушении технологического процесса). При этом следует учитывать, что большинство консервированных продуктов уже готовы к употреблению, т.е. дополнительные потери при кулинарной обработке перед потреблением почти не возникают. При технологической обработке сырья изменяется качественный и количественный состав витаминов, белков, углеводов, жиров, минеральных и органических кислот и других веществ, что приводит к снижению пищевой ценности продукта. Однако технологическая обработка при консервировании может разрушать антиалиментарные вещества, улучшать консистенцию, повышая пищевую ценность.

Контрольные вопросы и задания

1. Кто предложил классификацию способов консервирования?

2. Какие причины снижают хранимоспособность сырья и продуктов?

3. Охарактеризуйте основные принципы консервирования.

4. К какому методу консервирования относится обеспложивающее фильтрование?

5. Чем пастеризация отличается от стерилизации?

6. Что такое радапертизация?

7. Приведите характеристику основных методов замораживания.

8. Что такое флюидизация?

9. Раскройте сущность СВЧ-, УВЧ-, УФЛ-способов консервирования.

10. При какой температуре целесообразно хранить большинство продуктов?

11. В чем отличие антибиотиков от консервантов?

12. Дайте характеристику основным антибиотикам.

13. Приведите характеристику основных способов сушки.

14. Раскройте сущность биохимических методов консервирования.

15. Что такое копчение? Чем копчение отличается от вяления?

16. Как изменяется пищевая ценность продуктов при консервировании?

17. В каких концентрациях сахароза и углекислый газ сдерживают развитие микроорганизмов?

18. Оцените перспективы развития консервной промышленности.

Глава пятая СОВРЕМЕННЫЕ АСПЕКТЫ ПРОЕКТИРОВАНИЯ ФУНКЦИОНАЛЬНЫХ ПРОДУКТОВ

Как отмечалось в третьей главе, проблема обеспеченности продуктами питания во все времена являлась одной из самых важных проблем, стоящей перед человеческим обществом. Человечество испытывало и продолжает испытывать дефицит продуктов питания. Однако простое увеличение потребления пищи не может решить всех проблем, связанных с питанием. Оно должно быть рациональным, соответствовать основным положениям науки о питании, которые необходимо учитывать при разработке стратегии развития пищевой промышленности.

Исходя из этого, проблема здорового питания населения имеет важное социально-экономическое значение. Научные представления о специфике ассимиляции пищевых веществ получили свое выражение в концепции сбалансированного питания, которая предусматривает качественные взаимосвязи и оптимальные количественные соотношения и особенности взаимодействия основных пищевых веществ при поступлении в организм человека.

Организованный институтом питания РАМН мониторинг состояния питания свидетельствует о том, что структура питания населения в последнее время не соответствует концепции сбалансированного питания. Ведущим по степени негативного влияния на здоровье является дефицит животных белков, растительных жиров и микронутриентов, что приводит к ослаблению сопротивляемости организма воздействию неблагоприятных факторов окружающей среды. Это указывает на необходимость совершенствования научно-практических подходов к созданию продуктов питания.

Создание новых технологий позволило выделить направление по разработке так называемых «функциональных продуктов». Нынешнее развитие мирового рынка функционального питания подобно лавине, о чем красноречиво указывают следующие данные: в 1995 г. объем продаж продуктов «для здоровья» составил 10 млрд долларов США, в 2000 г. — 15 млрд долларов, а к концу 2002 г. — 33 млрд долларов. Предполагается, что к 2010 г. Объем продаж в Европе превысит 30 % реализуемых продуктов питания. Так, например, рост рынка функциональных молочных продуктов в России составляет не менее 25-30% в год и обгоняет рост всего молочного рынка России в целом в 3 раза. Превышение цен функциональных молочных продуктов по сравнению с ценами на обычные в настоящее время составляет 8-10 %, на Западе — 25-30 %.

К основным причинам интенсивного роста и развития продуктов функционального назначения относятся: растущие расходы на здравоохранение, старение населения в большинстве развитых стран, осознание необходимости следить за своим здоровьем.

Общие вопросы создания

Функциональных продуктов

Формирование научных представлений о питании и роли пищевых веществ в процессах жизнедеятельности началось в середине XIX в. с появлением классической парадигмы питания, становлению которой предшествовал ряд научных открытий, непосредственно или опосредованно связанных с пи­танием. К ним относятся открытие витаминов, ионов микроэлементов, научные достижения, связанные с выяснением структуры белков, жиров, углеводов и нуклеиновых кислот, роли микроэлементов в жизнедеятель­ности организма, структуры и организации биологических систем, науч­ные данные, связанные со строением организма на клеточном уровне. Впервые за всю историю эволюции цель питания стали связывать со здо­ровьем человека.

Концентрированным выражением классической парадигмы явилась окончательно сформировавшаяся в XX в. теория сбалансированного питания, в основе которой лежат три глав­ных положения: при идеальном питании приток веществ точно соответствует их по­тере; приток питательных веществ обеспечивается путем разрушения пи­щевых структур и использования организмом образовавшихся орга­нических и неорганических веществ; энергетические затраты организма должны быть сбалансированы с поступлением энергии.

Согласно этой теории, нормальное функционирование организма обеспечивается при его снабжении не только необходимыми энерги­ей и белком, но также при соблюдении определенных соотношений между многочисленными незаменимыми факторами питания, каждый из которых выполняет свою специфическую функцию в обмене ве­ществ. В основе теории сбалансированного питания лежит определение пропорций отдельных пищевых веществ в рационе, отражающих сумму обменных реакций, которые характеризуют химические процессы, обес­печивающие в итоге жизнедеятельность организма. Исходя из формулы сбалансированного питания, полноценный ра­цион должен содержать питательные вещества пяти классов: источники энергии: белки, жиры, углеводы; незаменимые аминокислоты; витамины; незаменимые жирные кислоты; неорганические элементы.

В 80-х годах XX в. сформулирована новая теория питания, представляющая собой развитие теории сбалансированного питания с учетом новейших знаний о функциях балластных веществ и кишечной микрофлоры в физиологии питания. Эта теория, автором которой явился российский физиолог академик РАМН А.М. Уголев, названа «теорией адекватного питания». В ее основу положено четыре принципиальных положения:

— пища усваивается как поглощающим ее организмом, так и населяю­щими его бактериями;

— приток нутриентов в организме обеспечивается за счет извлечения их из пищи и в результате деятельности бактерий, синтезирующих питательные дополнительные вещества;

— нормальное питание обусловливается не одним, а несколькими пото­ками питательных и регуляторных веществ;

— физиологически важными компонентами пищи являются балластные вещества, назвающиеся «пищевыми волокнами».

Теория адекватного питания формулирует основные принципы, обес­печивающие рациональное питание, в котором учитывается весь комп­лекс факторов питания, взаимосвязи этих факторов в обменных процес­сах и соответствие ферментных систем организма индивидуальным осо­бенностям протекающих в нем химических превращений.

Впервые функциональные продукты ( FOSHU — » food for specified health use » — специфические продукты питания, применяемые для улучшения здоровья) появились в Японии в 1980-1985 гг. Термин объединял продукты естественного происхождения, которые при систематическом потреблении, в отличие от продуктов рационального питания, оказывали положительное влияние на органы человека или их функции, или организм в целом.

До 1990-х годов идея функционального питания для всего мира была всего лишь «причудой», ограниченной пределами Японии, в дальнейшем основные принципы концепции функционального питания взяты на вооружение в развитых и развивающихся странах мира (Германии, Франции, Финляндии, Швеции, США, Канаде, Китае, Корее). Как результат — очевидное улучшение состояния здоровья населения на фоне ухудшения экологии.

Японские исследователи, основоположники концепции функционального питания, определяют три основных качества продуктов данного назначения: пищевая ценность, вкусовые качества и физиологическое воздействие на организм. Согласно названной совокупности свойств, функциональные пищевые продукты рассматриваются не только как источник пластических веществ и энергии, но и как сложный комплекс, который обеспечивает достоверно проявляющийся лечебный эффект. В то же время продукты функционального питания не относятся к категории лекарственных препаратов и лечебной пищи, хотя и используются для улучшения функционирования систем организма и повышения качества здоровья человека. Известно, что к лечебным относятся продукты специального назначения, используемые в качестве лечебного приема в комплексной терапии заболеваний. Они характеризуются измененным химическим составом и физическими свойствами. Следовательно, в структуре питания современного человека функциональные продукты занимают среднее место между обычными продуктами, изготовленными по традиционным технологиям, и продуктами лечебного питания. Вместе с тем, функциональные продукты можно условно отнести к группе лечебно-профилактических, предназначенных для лиц, подвергающихся воздействию неблагоприятных факторов. Важно отметить, что эти требования относятся к продукту в целом, а не только к отдельным его ингредиентам.

Директор НИИ питания РАМН академик В.А. Тутельян назвал продукты функционального питания продуктами с заданными свойствами, обогащенными эссенциальными пищевыми веществами и микронутриентами. Развернутая формулировка дана одним из ведущих специалистов по функциональному питанию Б.А. Шендеровым: «Продукты функционального питания — это такие продукты естественного или искусственного происхождения, которые предназначены для систематического ежедневного употребления и оказывают регулирующее действие на физиологические функции, биохимические реакции и психосоциальное поведение человека через нормализацию его микроэкологического статуса».

Функциональные пищевые продуты — это продукты, которые оказывают потенциально благотворное воздействие на здоровье, когда они употребляются как часть разнообразного питания на регулярной основе и в эффективных дозах. Благотворное воздействие функциональных продуктов обусловлено присутствием в них определенных функциональных ингредиентов, перечень которых многообразен. Физиологическое воздействие функциональных пищевых композиций может заключаться в улучшении процесса пищеварения, иммуностимуляции, антиканцерогенном действии, гепатопротекции, снижении содержания холестерина в крови, улучшении состояния гипертоников, улучшении состояния костей и зубов за счет специальных минеральных добавок и т.д.

Первоначально по классификации японских ученых принадлежность к функциональным продуктам устанавливали по наличию в них бифидобактерий, олигосахаридов, пищевых волокон. В последующем перечень ингредиентов был расширен и стал включать пищевые волокна, олигосахариды, сахароспирты, протеины, пептиды и аминокислоты, гликозиды, спирты, изопреноиды, витамины, холины, бифидо- и молочнокислые бактерии, минеральные элементы, полиненасыщенные жирные кислоты, фитопрепараты, антиоксиданты и т.д.

В Европе в Международном институте науки о жизни (ILSI) в 1998 г. сформулировали рабочее определение функциональных продуктов: «…пищевой продукт можно считать «функциональным», если он достаточно убедительно продемонстрировал благоприятное воздействие на одну или более заданных функций организма, кроме адекватного питательного эффекта, таким образом, что состояние здоровья улучшилось и/или снизился риск заболеваемости». Согласно этому определению функциональные пищевые продукты должны оставаться продуктами питания (не таблетки или капсулы, а часть нормального питания). В Европейском союзе функциональные продукты подразделены на два типа: тип А — усиление функций организма; тип Б — снижение риска заболеваемости.

По теории Д. Поттера, на современном рынке представлены ингредиенты, которые могут быть разделены на семь основных групп: пищевые волокна, витамины (С, группа В, D), минеральные вещества (кальций, железо), липиды, содержащие полиненасыщенные жирные кислоты, антиоксиданты, олигосахариды, некоторые виды полезных микроорганизмов (пробиотиков).

Производство продуктов функционального питания занимает все более заметное место в пищевой промышленности развитых стран и постоянно контролируется государственными органами здравоохранения. Функциональные продукты выпускают как в виде привычных для потребителей изделий, так и в виде сиропов, сухих завтраков или других полуфабрикатов.

В современных публикациях высказывается мнение о том, что в связи с появлением на российском рынке большого количества продукции, производимой в странах Западной Европы, а также в связи с использованием отечественными производителями различного рода добавок и растительных компонентов ассортимент продуктов на основе традиционных значительно увеличился. Это требует упорядочения его номенклатуры в соответствие с международными документами и, в первую очередь, с «Codex Alimentarius». Достижение намеченного возможно лишь с учетом современных требований науки о питании, а также трансформации классической теории адекватного питания, которая обновляется благодаря развитию гигиены питания.

Н.Н. Липатов (мл.) классифицирует комбинированные продукты на три группы (поколения): продукты, приближенные по органолептическим показателям к традиционным, однако часть основного сырья заменена гидратированными, эквивалентными по содержанию белка компонентами; продукты, удовлетворяющие потребности в эссенциальных нутриентах; продукты, обеспечивающие материальный и энергетический баланс в организме человека.

Сырье, используемое для получения комбинированных продуктов, должно отвечать следующим требованиям: балансировать все или отдельные компоненты в соответствии с теорией сбалансированного питания; гарантировать гигиеническую безопасность получаемого продукта; не придавать продуктам выраженных вкусов, ощущений и запахов; обеспечивать получение продукта с высокими органолептическими показателями; обогащать продукт биологически активными веществами.

Источники такого сырья весьма разнообразны. Условно их можно разделить на шесть основных групп.

К первой группе следует отнести плодово-ягодные и овощные добавки, применяемые в натуральном виде, а также в виде сиропов, концентратов или сухих смесей. Эти добавки позволяют отрегулировать содержание в продуктах витаминов, углеводов, минеральных веществ, пищевых волокон. Кроме того, они, как правило, придают продуктам выраженный вкус и аромат фруктов или овощей, а также привлекательный внешний вид.

Вторую группу составляют продукты морских промыслов. Следует отметить, что эта группа представляет собой весьма большой резерв для создания разнообразных комбинированных продуктов на молочной основе. Использование рыбы и рыбных продуктов позволяет регулировать в них белковый и липидный состав, относительное содержание свободных аминокислот, жирнокислотный состав, содержание йода, фтора, калия, а также органических кислот.

В особую группу следует выделить дикорастущее растительное сырье (съедобные виды папоротника, грибы, калину, шиповник, боярышник, крапиву и другие растения). Как правило, они содержат биологически активные вещества профилактического назначения (флавоноиды, дубильные вещества, пектины, органические кислоты, витамины, алкалоиды, эфирные масла, микроэлементы и другие соединения). Природные запасы такого сырья весьма значительны и вполне могут удовлетворить потребности промышленности.

К четвертой сырьевой группе следует отнести бобовые и злаковые культуры. Особенно перспективным является использование продуктов переработки сои. С их использованием можно вырабатывать практически все продукты. Применение сои позволяет регулировать белковый и липидный обмен, а также влиять на соотношение в них свободных жирных кислот.

Основная проблема, возникающая при использовании растительных полифункциональных добавок природного происхождения, заключается в нестабильности количественного и качественного состава вносимых с ними биологически активных веществ. Данная проблема усугубляется еще и тем, что химический состав одних и тех же растений, животных, а также различных видов минерального сырья может сильно варьировать в зависимости от целого ряда факторов окружающей среды, способов переработки и хранения. Это создает серьезные трудности в обеспечении реального содержания вносимых биологически активных веществ в обогащаемом продукте на одном и том же регламентируемом уровне.

Отдельную группу компонентов, используемых при выработке комбинированных продуктов, составляют биологически активные вещества. На первостепенную важность разработки и организации массового производства продуктов с биологически активными веществами указывает их постоянный дефицит в рационах населения. Особенно такие продукты необходимы для регионов, неблагополучных в экологическом отношении. Увеличение в продуктах биологически активных веществ придает им лечебно-профилактические свойства.

К перспективным следует отнести сырье микробного синтеза (шестая группа). Это один из нетрадиционных способов получения пищевых продуктов, связанный с биосинтезом микроорганизмов. Считается, что в будущем он способен ликвидировать одну из важнейших продовольственных проблем — белковый дефицит.

Наличие большого количества разнообразных пищевых компонентов, применение которых возможно при производстве комбинированных продуктов питания указывает на необходимость четкого научного подхода к их выработке. На базе современных представлений науки о питании сформулированы основные принципы проектирования многокомпонентных пищевых продуктов. Этими принципами следует руководствоваться при практической реализации подходов по созданию многокомпонентных продуктов.

На начальном этапе формулируется техническое задание, включающее основные требования к составу, свойствам, органолептике, пищевой и биологической ценности проектируемого продукта. Второй этап включает поиск необходимых ингредиентов и их сочетаний, позволяющих реализовать требования технического задания. При этом учитывают экономические показатели. Следующий этап заключается в отработке технологии получения нового продукта. На этом этапе устанавливаются способы и режимы подготовки отдельных ингредиентов к переработке, а также основные технологические параметры выработки и хранения нового продукта. В последующем проводится изучение состава и свойств вновь полученного продукта и определяется его соответствие заданным параметрам. При наличии отклонений в составе или свойствах проводится корректировка рецептур и технологических параметров до полного соответствия продукта заданным характеристикам. Заключительным этапом создания нового комбинированного продукта является разработка нормативно-технической документации и внедрение результатов работы в практику.

В табл. 5.1 в качестве примера приведено использование компонентов молока для создания функциональных продуктов. Как можно заметить, среди потенциально активных компонентов наиболее интересными считаются те, которые содержатся в сыворотке, даже если их концентрация очень незначительная. Исключение составляют иммуноглобулины из молозива.

Таблица 5.1

Методы консервирования пищевых продуктов

Методы консервирования пищевых продуктов

Консервирование – это обработка пищевых продуктов для длительного сохранения их доброкачественности различными способами, которые обеспечивают подавление и прекращение биохимических процессов, происходящих в продуктах под действием ферментов. Консервирование позволяет устранить сезонность в потреблении скоропортящихся продуктов, расширить ассортимент товаров и повысить степень их готовности к употреблению. Кроме того, применение некоторых способов консервирования позволяет получать продукты с иными свойствами, т.е. по существу другие товары.

Различают физические, физико-химические, биохимические и химические методы консервирования.

К физическим методам относят консервирование с помощью низких и высоких температур, фильтрования, лучистой энергии, ультразвука, ионизирующей обработки.

Рассмотрим данные методы.

1. Низкие температуры применяют для охлаждения и замораживания продуктов.

Охлаждение – это понижение температуры продукта до минимальной (0-4 °С). При охлаждении не допускается замораживания влаги в продукте. Охлаждение вызывает замедление химических и биохимических процессов, жизнедеятельности микроорганизмов и способствует увеличению сроков хранения товаров. Охлажденные продукты имеют внутри температуру 0 °С или немного ниже. При этом продукты почти полностью сохраняют питательные вещества, вкус и аромат (молоко в охлажденном виде хранится до 24 часов, мясо – 15–20 суток и т.д.).

Температура, при которой начинается образование кристаллов льда в продукте, называется криоскопической. Криоскопическая температура для яиц равна –2,8 °С, для яблок – от 1,7 до –2,8 °С, для рыбы – от –0,6 до –2 °С, для картофеля – от –1,2 до –1,6 °С, для молока составляет –0,5 °С.

Продукты хранят не только в охлажденном, но и в переохлажденном состоянии, а также в замороженном виде.

Замораживание – это охлаждение продуктов до температуры от –12 до –18 °С и ниже, при этом большая часть воды переходит в лед. В результате этого в продукте создаются неблагоприятные условия для развития микроорганизмов, резко сокращается скорость биохимических процессов.

Качество замороженных продуктов сохраняется лучше при быстром замораживании, которое производят при температуре –24 °С и ниже. Однако качество замороженных продуктов по вкусовым и питательным свойствам уступает охлажденным.

При быстром замораживании в продукте образуются мелкие кристаллы льда, которые равномерно распределяются и не изменяют структуры продукта. При размораживании образовавшаяся влага полностью связывается продуктом. В охлажденных и замороженных продуктах значительно замедляются или приостанавливаются микробиологические и биохимические процессы, хорошо сохраняются витамины.

Процесс замораживания применяется также для достижения следующих целей:

1) отделения влаги при концентрировании жидких пищевых продуктов;

2) изменения физических свойств продуктов (твердость, хрупкость и др.) при подготовке их к дальнейшим технологическим операциям;

3) сублимационной сушки;

4) производства своеобразных пищевых продуктов и придания им специфических вкусовых и товарных качеств (мороженое, пельмени и другие быстрозамороженные продукты).

Эффект замораживания достигается при температуре в центре продукта –6 °С и ниже. Замороженные продукты хранят при температуре не выше –18 °С.

Замороженный продукт отличается от охлажденного рядом признаков и свойств:

1) твердостью – результат превращения воды в лед;

2) яркостью окраски – результат оптических эффектов, вызываемых кристаллизацией льда;

3) уменьшением удельного веса – следствие расширения воды при замораживании;

4) изменением термодинамических характеристик (теплоемкость, теплопроводность, температуропроводность).

При замораживании в отличие от охлаждения происходит частичное перераспределение влаги, травмирование тканей продукта кристаллами льда, а также иногда частичная денатурация белка.

Во время замораживания продуктов происходит их усушка. Унесенная воздухом влага осаждается на поверхности воздухоохладителей в виде «снеговой шубы». Усушки почти не происходит, если продукт находится в герметичной таре или упаковке.

2. Высокие температуры применяют для пастеризации и стерилизации продуктов.

Пастеризация – это нагревание продукта до температуры ниже 100 °С. При пастеризации погибают только вегетативные клетки микробов. Поэтому пастеризация хотя и удлиняет сроки хранения, но не гарантирует их полной сохранности. Пищевая ценность пастеризованных продуктов практически не изменяется, только частично разрушается витамин С.

Стерилизация – это нагревание продукта при температуре свыше 100 °С. При стерилизации погибает большинство микроорганизмов и их споры, а также разрушаются ферменты. Поэтому стерилизованные продукты сохраняются длительное время. При стерилизации снижается их вкусовая и питательная ценность, разрушаются витамины.

Асептическим методом консервируют жидкие и пюреобразные продукты: продукты подвергаются кратковременной высокотемпературной стерилизации в крупных емкостях, а затем фасуют в стерильную тару и укупоривают в асептических условиях. При этом сокращается время термической обработки продукта, в результате лучше сохраняется его качество после стерилизации и при последующем хранении.

Продукты стерилизуют также электрическим током сверхвысокой частоты и ультразвуком. Бактерицидными свойствами обладают ультрафиолетовые лучи, которыми стерилизуют поверхности продуктов, воды, воздуха, тары и оборудования. Ультразвук разрушает микроорганизмы и их споры. Механическая стерилизация – фильтрование жидких продуктов (фруктовых соков) через специальные фильтры, задерживающие микроорганизмы. Облучение ионизирующей радиацией можно использовать для задержки прорастания картофеля, лука при хранении т.д. Этот метод находится в стадии разработки.

Физико-химические методы – это консервирование продуктов поваренной солью, сахаром и сушкой.

Консервирующими факторами являются повышение осмотического давления (т.е. давления, вызванного молекулами растворенного вещества) и снижение активности воды. Повышение осмотического давления достигается внесением в продукт поваренной соли или сахара либо концентрированием растворенных веществ самого продукта путем его высушивания. При высоком осмотическом давлении снижается активность воды, наступает плазмолиз (обезвоживание) клеток микробов, инактивируются ферменты. Консервирующее действие поваренной соли обусловлено также тем, что активные катионы натрия и анионы хлора присоединяются по месту пептидных связей белковых молекул, в результате чего белки продукта становятся недоступными для питания микроорганизмов.

1. При консервировании сушкой (обезвоживание) необходимую для жизни и деятельности микроорганизмов влагу из продуктов удаляют обычно тепловым способом. Наиболее распространена сушка продуктов воздухом, нагретым до 80–120 °С и выше. Для каждого вида продуктов разработаны оптимальные режимы сушки.

Существует естественная и искусственная сушка. Естественным способом сушат абрикосы, виноград и другие плоды. Искусственная сушка продуктов осуществляется в специальных сушильных камерах и аппаратах. Известно много способов сушки: нагретым до 80–120 °С воздухом (конвективная, распылительная), горячей поверхностью (вальцевая сушка), сублимационная, вакуумная, микроволновая и другие виды.

Вакуумная сушка характеризуется тем, что продукт высушивается без доступа воздуха при сравнительно низкой температуре (40–60 °С), благодаря чему хорошо сохраняются первоначальные свойства продукта.

Микроволновая сушка проводится с использованием энергии сверхвысокой частоты (СВЧ); процесс сушки при этом ускоряется, продукты приобретают пористую структуру, увеличиваются в объеме.

При сушке методом сублимации продукт обезвоживается в замороженном состоянии (при –5 °С и ниже) и при глубоком вакууме (1,5–2,0 гПА). В этих условиях влага продукта из твердого состояния (льда) переходит в парообразное, минуя жидкую фазу. Происходит возгонка, т.е. сублимация, замороженной влаги в пар. У высушенных продуктов быстро восстанавливаются исходные свойства при заливке их теплой водой. Методом сублимации консервируют мясо, фрукты, овощи, соки и другие продукты.

Консервирование сушкой имеет свои преимущества и недостатки. Преимущества состоят в том, что сушеные продукты хорошо сохраняются, удобны для транспортирования, обладают более высокой калорийностью.

К недостаткам сушки следует отнести изменение физического состояния продукта (внешнего вида, формы, объема, плотности), потери витаминов, ароматических и вкусовых веществ. Размеры потерь, а следовательно, и питательная ценность продуктов во многом зависят от вида применяемой сушки. Наиболее значительные потери наблюдаются в продуктах при солнечной сушке, сушке горячей поверхностью и нагретым воздухом.

2. Консервирование солью применяют для подавления или прекращения жизнедеятельности микроорганизмов в результате повышения осмотического давления в продукте при добавлении в него поваренной соли. Высокое осмотическое давление вызывает обезвоживание и плазмолиз микробной клетки. Консервирующий эффект зависит от концентрации клетки.

При солении происходит частичная потеря питательных веществ продукта, которые вместе с водой переходят в рассол, изменяются вкусовые свойства. Некоторые виды рыбы (сельди, лососевые) в результате выдержки при посоле приобретают особые вкусовые достоинства.

3. Консервирование сахаром также основано на повышении осмотического давления, обеспечивающего подавление развития микроорганизмов в продукте при добавлении в него сахара. Консервирующее действие сахара слабее, чем соли, поэтому консервацию сахаром часто сочетают с пастеризацией или стерилизацией продукта в герметической таре, а также варкой. Этим способам готовят варенье, джем, повидло, цукаты. Продукты, консервированные сахаром, имеют более высокую калорийность по сравнению с исходным сырьем, однако при нагревании возможны потери витаминов и ароматических веществ.

Биохимические методы консервирования. Эти методы основаны на подавлении действия микроорганизмов и ферментов путем добавления консервирующих веществ в продукты или образования их в результате биохимических (ферментативных) процессов. Типичным примером биохимического способа консервирования является квашение.

Квашение основано на консервирующем действии молочной кислоты, образующейся в результате молочнокислого брожения сахаров продукта. Накопившаяся молочная кислота, изменяя кислотность среды, подавляет деятельность гнилостных микроорганизмов, чем и объясняется хорошая сохраняемость квашеных продуктов в охлажденных помещениях. Одновременно с образованием молочной кислоты накапливается этиловый спирт, который также оказывает консервирующее действие.

Квашение применяют для консервирования овощей (квашеная капуста, соленые огурцы, томаты и др.), плодов, грибов. Квашение, соление и мочение – это различные названия одного и того же способа консервирования. Соль, добавляемая в продукты при квашении, выполняет роль вкусового компонента, способствует выделению клеточного сока, содержащего сахар, а также благоприятно влияет на развитие молочнокислых бактерий на первой стадии брожения.

Преимущество квашения состоит в том, что оно позволяет получать продукт с другими вкусовыми свойствами, а также сохранять значительное количество витамина С.

Химические методы. К химическим методам относят следующие методы:

1. Консервирование этиловым спиртом (основано на губительном действии спирта на микроорганизмы). В концентрациях 12– 16% этиловый спирт замедляет развитие микрофлоры, а при 18% полностью подавляет. Этиловый спирт используется в качестве консерванта при производстве полуфабрикатов плодово-ягодных соков, обуславливает длительное хранение вина и других алкогольных напитков.

2. Маринование (основано на подавлении жизнедеятельности микроорганизмов уксусной кислотой, которая так же, как и молочная, повышает активную кислотность среды). Уксусную кислоту в количестве от 0,6 до 1,2% добавляют при мариновании плодов, овощей, рыбы, грибов. Небольшая концентрация кислоты не может полностью гарантировать защиту продукта от порчи в процессе хранения. Поэтому плоды и овощи, маринованные небольшим количеством уксусной кислоты, подвергают пастеризации или стерилизации, маринование рыбы сочетают с солением. Более же высокая концентрация уксусной кислоты ухудшает вкус продукта и небезвредна для организма человека.

3. Кроме перечисленных кислот, с целью консервирования используют сорбиновую, лимонную, бензойную кислоты и их соли. Наиболее перспективной из них является сорбиновая кислота, которая обладает бактерицидным действием по отношению к дрожжам и плесневым грибам. В отличие от других химических консервантов сорбиновая кислота не оказывает вредного воздействия на организм человека и не придает продуктам какого-либо привкуса и запаха. Сорбиновую кислоту и ее соли применяют для консервирования фруктовых пюре, соков, томатопродуктов и др.

Известно много других химических веществ, которые находят применение для удлинения сроков хранения пищевых продуктов. К таким веществам относят метабисульфит калия, сернистый газ, уротропин, борную кислоту и т.д.

Разработчики биоконсервантов столкнулись с серьезной трудностью. В связи с повышением стоимости металлической тары в настоящее время стало возможным использование полимерной тары для консервирования пищевых продуктов. Но недостатком данного вида материала является снижение сроков годности продукта. Поэтому прибегают к различным консервантам, которые могут оказывать на организм человека неблагоприятное воздействие. Среди современных и достаточно безопасных консервантов следует выделить препараты естественного происхождения.

К препаратам естественного происхождения относятся продукты с добавлением бифидум– и лактобактерий. Также используются лактококки, обладающие полезными для человека свойствами. Представителем данной группы является низин – антимикробное вещество природного происхождения. В этом его отличие от традиционных и совсем не безвредных уксусной, бензойной, сорбиновой кислот. Он является единственным антибиотиком, допущенным органами здравоохранения к широкому применению в пищевой промышленности.

Учитывая потребность в качественных консервах с высокими органолептическими показателями, пищевая промышленность, в особенности консервная отрасль, начинают внедрять биоконсерванты, которые имеют высокую потребительскую ценность.

Комбинированные способы консервирования. Находят широкое применение в производстве и хранении пищевых продуктов. К ним относят, например, копчение рыбы, мясных изделий. Консервирующими факторами при копчении являются химические вещества, переходящие в продукт из дыма или коптильной жидкости, частичное обезвоживание продукта, а также поваренная соль. Товары холодного копчения могут храниться при обычной температуре несколько месяцев. К комбинированным методам стоит также отнести вяление рыбы (соление сочетается с подсушиванием), получение молочных консервов (сгущение сочетается с сахаром или стерилизацией).

Комбинированные методы консервирования часто дают положительные результаты для сохранения пищевых достоинств продукта и повышения стойкости в хранении.

Санитарная экспертиза консервов

Такие экспертизы проводятся для оценки качества и безопасно­сти консервов. К переработке на мясные (птичьи, рыбные, мо­лочные) консервы допускают соответствующее сырье, прошед­шее ветеринарно-санитарный осмотр. Перед стерилизацией содер­жимое консервных банок исследуют микробиологически. Готовые консервы подвергают органолептической проверке и лаборатор­ному исследованию для определения физико-химических и мик­робиологических показателей. Отбор проб консервов и подготовка их к лабораторным исследованиям на соответствие требованиям безопасности по микробиологическим показателям проводится после осмотра и санитарной обработки, проверки герметично­сти, термостатирования консервов, определения внешнего вида консервов после термостатирования.

В соответствии с действующим стандартом принята единая си­стема маркировки банок с различной консервированной продук­цией (главным образом на жестяных консервных банках). Марки­ровка в виде буквенно-цифрового кода представляет собой пас­порт банки с консервами. Кроме того, на банке указывают дату изготовления консервов и смену, их изготовившую. Обычно мар­кировочные знаки выштамповываются или наносятся несмывае­мой краской на крышки металлических банок.

Контакт металлической тары с содержимым часто приводит к нежелательным химическим взаимодействиям — коррозии на по­верхности жести и олова. Эти явления более заметно выражены в консервах с высокой кислотностью (маринадах, овощных закусоч­ных и т.д.). В банках с консервами из продуктов, содержащих много белковых веществ (мясных, рыбных, из горошка и др.), обычно обра­зуется так называемая мраморизация, или сульфидная коррозия, при взаимодействии олова и железа жести с сернистыми компонен­тами белковых продуктов. Эта сульфидная прочная синевато-корич­невая пленка не вредна для здоровья, но она ухудшает внешний вид продукта. Для предотвращения коррозии и мраморизации консерв­ную тару изготовляют из предварительно лакированного листового металла (белой жести, алюминия и его сплавов), а иногда лакируют готовые банки изнутри пищевыми лаками методом распыления.

К основным видам брака консервов относятся:

1) истинный бомбаж (вздутие крышек и донышек вследствие газообразования в результате жизнедеятельности микроорганиз­мов при недостаточной стерилизации — биологический бомбаж, или при взаимодействии кислот продукта с металлом в нелакиро­ванных банках — химический бомбаж);

2) ложный бомбаж (при чрезмерном наполнении банок, на­гревании или замораживании);

3) деформация банок (хлопуши, птички);

4) ржавление.

Оптимальные условия хранения консервов — температура от О до 20 °С, относительная влажность воздуха не выше 75 % (для ва­ренья, джемов и повидла во избежание засахаривания — от 15 °С) в обычных складских помещениях в течение длительных сроков (обычно несколько лет). Пресервы следует хранить при низких температурах (ниже 0°С).

К микробиологическим показателям безопасности (промыш­ленной стерильности) полных консервов (групп А, Б, В и Г) от­носятся:

• спорообразующие мезофильные аэробные и факультативно-анаэробные микроорганизмы группы В. subtilis;

• спорообразующие мезофильные аэробные и факультативно-анаэробные микроорганизмы группы В. cereus и В. polymyxa;

• мезофильные клостридии;

• неспорообразующие микроорганизмы, молочно-кислые мик­роорганизмы, плесневые грибы, дрожжи;

• спорообразующие термофильные анаэробы, аэробные и фа­культативно-анаэробные микроорганизмы.

Микробиологические показатели безопасности неполных кон­сервов включают в себя: КМАФАнМ, БГКП, сульфитредуциру-ющие клостридии, сальмонеллы, В. cereus, S. aureus.

С позиций химической безопасности в консервированных про­дуктах контролируются (кроме показателей безопасности, отно­сящихся к сырью) содержание олова и хрома (для консервов в сборной жестяной и хромированой таре), продуктов деструкции полимерных и других синтетических материалов (в зависимости от класса применяемого полимера), концентрации используемых пищевых добавок (консервантов).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *