Классификация электрического тока

Классификация электрических цепей переменного тока

⇐ ПредыдущаяСтр 43 из 128

1. По роду тока: постоянного тока, переменного тока, синусоидальные, несинусоидальные.

2. По числу фаз: однофазные, трехфазные.

3. По характеру элементов: линейные (в них все элементы линейные), нелинейные (содержат хотя бы один нелинейный элемент).

Линейные элементы отличаются от нелинейных вольт-амперными характеристиками (ВАХ) . Примеры ВАХ приведены на рис. 1.5.

а б

Рис. 1.5. ВАХ линейного (а) и нелинейного элемента (б)

1. На электрические цепи с сосредоточенными и с распределенными параметрами (например ЛЭП).

2. По способу соединения потребителей: разветвленные, неразветвленные.

Основные топологические понятия:

узел – место соединения трех и более ветвей;

ветвь – участок цепи между двумя соседними узлами, в котором все элементы соединены последовательно;

контур – замкнутый участок электрической цепи, в котором каждый из элементов цепи встречается не более одного раза.

Электрической цепью называют совокупность устройств и объектов, предназначенных для распределения, взаимного преобразования и передачи электрической и других видов энергии и (или) информации. Свое назначение цепь выполняет при наличии в ней электрического тока. Электромагнитные процессы в цепи и ее параметры могут быть описаны с помощью известных из курса физики интегральных понятий: ток, напряжение (разность потенциалов), заряд, магнитный поток, электродвижущая сила, сопротивление, индуктивность, взаимная индуктивность и емкость.

В отличие от электрической цепи электромагнитные процессы в ряде электротехнических устройств характеризуются дифференциальными понятиями: вектор напряженности электрического поля и вектор электрического смещения, вектор напряженности магнитного поля и вектор магнитной индукции, плотность заряда и вектор плотности тока, удельная электрическая проводимость и др. Анализ устройств, процессы в которых описываются с помощью дифференциальных понятий, рассматривают в теории электромагнитного поля.

Следует отметить, что именно в теории поля дается определение интегральных понятий (таких, как ток и напряжение), характеризующих электрическую цепь. Расчет параметров цепи (сопротивлений, индуктивностей, емкостей) в общем случае также возможен только с помощью понятий, используемых в теории поля.

В некоторых случаях одно и то же устройство можно анализировать и методами теории цепей, и методами теории поля. Например, линия передачи электрической энергии может рассматриваться как цепь с распределенными параметрами или как направляющая система для электромагнитного поля. Выбор того или иного метода зависит от конкретных целей анализа, необходимой точности и других факторов.

Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи.

Основными элементами цепи являются источники и приемники электрической энергии (сигналов).

Источники энергии (сигналов), такие, как электромеханические или электронные генераторы, аккумуляторы, гальванические элементы, термодатчики и т. д., предназначены для преобразования различных видов энергии в электрическую энергию.

Приемники энергии (сигналов) служат для преобразования электрической энергии в другие виды энергии. К ним относятся электрические двигатели, нагревательные приборы, электрические лампы, электронно-лучевые трубки, динамические громкоговорители и др.

Кроме основных элементов, цепь содержит различные вспомогательные элементы, которые связывают источники с приемниками (соединительные провода, линии передачи), подавляют или усиливают определенные составляющие сигналов (фильтры, усилители), изменяют уровень напряжения и тока в других частях цепи (трансформаторы), улучшают или изменяют характеристики и параметры участков цепи и ее элементов (корректирующие устройства, фазовые звенья) и т. п.

По назначению различают цепи для передачи и преобразования электрической энергии (цепи, применяемые в электроэнергетике) и цепи для передачи и преобразования информации (цепи в технике связи, радиотехнические цепи, цепи устройств автоматики и телемеханики и т. д.).

Цепи можно классифицировать по типу элементов, из которых они состоят, например, резистивные цепи — цепи, состоящие из резисторов и источников энергии, электронные цепи — цепи, содержащие электронные лампы и транзисторы, и т. д.

У каждого элемента цепи можно выделить определенное число зажимов (полюсов, выводов), с помощью которых он соединяется с другими элементами.’

Различают двухполюсные и многополюсные (трехполюсные, четырехполюсные и т. д.) элементы цепи. Двухполюсные элементы имеют два зажима; к ним относятся источники энергии (за исключением многофазных и управляемых источников), резисторы, конденсаторы, индуктивные катушки.

Наиболее распространенные трехполюсные элементы — это электронные лампы (вакуумные триоды) и транзисторы (полупроводниковые триоды). 4

Примерами четырехполюсных элементов могут служить трансформаторы (двухобмоточные), индуктивные катушки с подмагничиванием (дроссели с подмагничиванием), интегральные операционные усилители.

Элементы цепи, имеющие более четырех зажимов, также находят применение (например, многообмоточные трансформаторы, различные микромодули — твердотельные компоненты электронных схем, многоэлектродные электронные лампы). Различают активные и пассивные элементы цепи. К активным элементам относятся источники энергии. Часто активными элементами называют также электронные лампы, транзисторы, операционные усилители, которые способны усиливать электрические сигналы. К пассивным относят элементы, в которых рассеивается и (или) накапливается энергия (резисторы, индуктивные катушки, конденсаторы, трансформаторы).

Реальные элементы цепи могут быть описаны алгебраическими или дифференциальными уравнениями, связывающими напряжения и токи на зажимах этих элементов. Такое описание может быть сделано с определенной степенью точности при идеализации физических процессов в элементах; второстепенные с определенной точки зрения процессы при этом не учитываются.

Если элемент цепи характеризуется линейными алгебраическими или дифференциальными уравнениями (при упомянутой ранее идеализации), то его называют линейным. Коэффициенты, связывающие напряжения и токи и их производные, представляют собой параметры элемента. Параметры линейного элемента могут быть постоянными (стационарный элемент) или могут изменяться в зависимости от времени по какому-либо закону (нестационарный, параметрический элемент).

Если элемент цепи описывается нелинейными алгебраическими или дифференциальными уравнениями, то он называется нелинейным. Нелинейные элементы могут быть также параметрическими.

Во многих случаях параметры элемента рассматриваются как сосредоточенные (элемент с сосредоточенными параметрами); при этом напряжения и токи на зажимах элемента не являются функциями пространственных координат, определяющих геометрические размеры элемента. Параметры элемента могут быть также распределенными (элемент с распределенными параметрами); такой элемент характеризуется уравнениями, в которых напряжения и токи зависят от пространственных координат. В качестве примеров элементов с распределенными параметрами можно назвать линии передачи энергии и информации, многослойные пленочные резистивно-емкостные микроструктуры.

Элементы электрической цепи могут удовлетворять или не удовлетворять принципу взаимности. Упрощенно принцип взаимности состоит в следующем: реакция цепи на участке 1 от возмущения на участке 2 равна реакции на участке 2 от такого же возмущения на участке 1. Математическая формулировка этого принципа и его иллюстрации даны ниже. В соответствии с этим различают взаимные и невзаимные элементы. Примеры взаимных элементов — резисторы, индуктивные катушки, конденсаторы, трансформаторы; к невзаимным элементам относятся электронные лампы, транзисторы и др.

Цепи, содержащие только линейные элементы, называют линейными цепями. Основное свойство таких цепей — применимость принципа наложения, заключающегося в том, что результирующая реакция линейной цепи на несколько приложенных одновременно возмущений равна сумме реакций, обусловленных каждым возмущением в отдельности.

Если цепь содержит один или несколько параметрических элементов, то ее называют параметрической (нестационарной).

Аналогично, если цепь содержит один или более нелинейных элементов, то ее называют нелинейной. Для нелинейной цепи в общем случае неприменим принцип наложения.

Цепь, содержащую элементы с сосредоточенными параметрами, называют цепью с сосредоточенны ми параметрами. Цепь, содержащую элементы с распределенными параметрами, называют цепью с распределенными параметрами.

Строго говоря, любая электрическая цепь представляет собой цепь с распределенными параметрами, зависящими от режима цепи, т.е, является нелинейной. Однако во многих случаях из-за большой скорости электромагнитных процессов изменения напряжений и токов, происшедшие на одном участке цепи, одновременно вызывают определенные изменения и на всех остальных участках цепи; зависимость параметров цепи от ее режима часто несущественна. Таким образом, во многих случаях реальные электрические цепи можно рассматривать как линейные цепи с сосредоточенными параметрами.

Цепи, содержащие только взаимные элементы, называют взаимными (цепи, состоящие из резисторов, конденсаторов, индуктивных катушек, трансформаторов и источников энергии). Если в цепи имеются невзаимные элементы, то цепь называют невзаимной (цепи с электронными лампами, транзисторами, операционными усилителями).

Можно говорить также об активных и пассивных цепях. Цепь считают активной, если по отношению к некоторым зажимам она является источником энергии. Такая цепь содержит активные элементы. В противном случае цепь называют пассивной.

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Классификация цепей.

  • первая. Электрические и магнитные цепи

    Электрическая цепь и ее элементы Электрическая цепь Определение цепи. Электрической цепью называется совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования электромагнитной электроэнергии, образующих путь для электрического тока. Элементы…
    (Электротехника)

  • Электрическая цепь и ее элементы

    Электрическая цепь Определение цепи. Электрической цепью называется совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования электромагнитной электроэнергии, образующих путь для электрического тока. Элементы цепи. В соответствии с перечисленными…
    (Электротехника)

  • Электрическая цепь

    Определение цепи. Электрической цепью называется совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования электромагнитной электроэнергии, образующих путь для электрического тока. Элементы цепи. В соответствии с перечисленными назначениями в электрических…
    (Электротехника)

  • Законы электрических цепей

    Направления тока и напряжения. Для расчета электрических цепей необходимо принять направления для токов, напряжений и ЭДС. Эти направления указывают на схемах стрелками (рис. 1.8). В цепях постоянного тока направление действия ЭДС источника принято указывать от отрицательного потенциала…
    (Электротехника)

  • Расчёт линейных электрических цепей

    Основные понятия и определения Задачи расчета цепей. Под расчетом электрических цепей в общем случае понимают весьма обширный круг задач, которые по форме постановки можно разделить на три группы: анализ цепей; расчет характеристик цепей; синтез цепей. Анализ цепей включает задачи,…
    (Электротехника)

  • Расчет простых цепей

    К ним относятся цепи с последовательным, параллельным и смешанным соединением сопротивлений. Их расчет осуществляется с помощью закона Ома и законов Кирхгофа. а) Цепь с последовательным соединением сопротивлений (рис. 2.1,а). Эта неразветвленная одноконтурная цепь, по которой протекает один и…
    (Электротехника)

  • Общий метод расчета сложных цепей

    Идея метода. Общий метод расчета электрических цепей, называемый иначе методом токов в ветвях, основан на одновременном использовании двух законов Кирхгофа для составления системы алгебраических уравнений, в которых в качестве неизвестных входят искомые токи различных ветвей цепи. Решая такую…
    (Электротехника)

  • Однофазные электрические цепи синусоидального тока

    Основные понятия о синусоидальных процессах Синусоидальный ток — это периодический ток, изменяющийся во времени по закону синуса. График этого тока представлен на рис. 3.1 в виде кривой, полученной на экране осциллографа. Рис. 3.1. Синусоидальный ток На рис. 3.1 ось времени (ось абсцисс)…
    (Электротехника)

  • Элементы в цепи синусоидального тока

    Рассмотрим амплитудные и фазовые соотношения между током и напряжением в элементах R, L и С. Для этого приложим к этим элементам синусоидальное напряжение и = Um sin(cof+|/„) и рассчитаем мгновенное значение тока в каждой из них (т.е. найдем его амплитуду и начальную фазу). 1. Сопротивление…
    (Электротехника)

  • Цепь с последовательным соединением R, L и С

    Известно приложенное к цепи синусоидальное напряжение и — Um sin(otf + V|/M) и параметры R,L,С цепи (рис. 3.5,а). Требуется определить ток цепи г, т.е. его амплитуду 1т и начальную фазу i[/, . В такой цепи действует 2-й закон Кирхгофа, который в векторной форме записи в соответствии…
    (Электротехника)

Элементы электрических цепей и схем. Классификация электрических цепей.

Стр 1 из 3

Элементы электрических цепей и схем. Классификация электрических цепей.

Все элементы электрических цепей можно разделить на три группы: источники (активные элементы), потребители и элементы для передачи электроэнергии от источников к потребителю (пассивные элементы).

Источником электрической энергии (генератором) называют устройство, преобразующее в электроэнергию какой-либо другой вид энергии (электромашинный генератор — механическую, гальванический элемент или аккумулятор — химическую, фотоэлектрическая батарея — лучистую и т.п.).Источники делятся на источники напряжения (Е,U=соnst, при изменении и I) и источники тока (I=соnst, при изменении U). Все источники имеют внутреннее сопротивление Rвн, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи .

Приемником электрической энергии (потребителем) называют устройство, преобразующее электроэнергию в какой-либо другой вид энергии (электродвигатель — в механическую, электронагреватель — в тепловую, источник света — в световую (лучистую) и т.п.).

Элементами передачи электроэнергии от источника питания к приемнику служат провода, устройства, обеспечивающие уровень и качество напряжения и др.

Условные обозначения элементов электрической цепи на схеме стандартизованы. Примеры:

— резистивный элемент (линейный),
— идеальный источник ЭДС, условно положительное направление ЭДС принято от отрицательного полюса к положительному (и совпадает с положительным направлением тока)
— нелинейный элемент,
— индуктивный элемент,
— емкостной элемент,
— полупроводниковый диод,
— плавкий предохранитель

Цепи, содержащие только линейные элементы, называют линейными цепями. Основное свойство таких цепей — применимость принципа наложения, заключающегося в том, что результирующая реакция линейной цепи на несколько приложенных одновременно возмущений равна сумме реакций, обусловленных каждым возмущением в отдельности.

Если цепь содержит один или несколько параметрических элементов, то ее называют параметрической (нестационарной).

Аналогично, если цепь содержит один или более нелинейных элементов, то ее называют нелинейной. Для нелинейной цепи в общем случае неприменим принцип наложения.

Цепь, содержащую элементы с сосредоточенными параметрами, называют цепью с сосредоточенными параметрами. Цепь, содержащую элементы с распределенными параметрами, называют цепью с распределенными параметрами.

Цепи, содержащие только взаимные элементы, называют взаимными (цепи, состоящие из резисторов, конденсаторов, индуктивных катушек, трансформаторов и источников энергии). Если в цепи имеются невзаимные элементы, то цепь называют невзаимной (цепи с электронными лампами, транзисторами, операционными усилителями).

Метод напряжения между двумя узлами

Метод двух узлов используется для цепей, имеющих n ветвей и два узла а и в (например, цепь, представленная на рис. 1).

Узловое напряжение определяется по формуле:

где
— алгебраическая сумма произведений ЭДС ветвей на проводимости этих ветвей;

сумма проводимостей всех ветвей, соединяющих узлы а и в.

Способы представления синусоидальных величин.

Аналитический способ

Для тока

i(t) = Im sin(ωt + ψi),

для напряжения

u(t) = Um sin (ωt +ψu),

для ЭДС

e(t) = Em sin (ωt +ψe),

В уравнениях обозначено:

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1).

i(t) = Im sin(ωt — ψi).

Графоаналитический способ

Рис. 2.2

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

Мощность трёхфазной цепи.

Трехфазная цепь является совокупностью трех однофазных цепей, поэтому ее мощность может быть определена как сумма мощностей фаз.

При соединении звездой активную P и реактивную Q мощности системы в общем случае можно определить как

P = Pa + Pb + Pc = UaIa cosja + UbIbcosjb + UcIccosjc = Ia2Ra + Ib2Rb + Ic2Rc ,

Q = Qa + Qb + Qc = UaIasinja + Ub Ib sinjb + Uc Ic sinjc = Ia2Xa + Ib2Xb + Ic2Xc .

Если нагрузка соединена треугольником, то активная и реактивная мощности будут равны

P = Pab + Pbc + Pca = UabIabcosjab + UbcIbccosjbc + UcaIcacosjca = Iab2Rab + Ibc2Rbc + Ica2Rca ,

Q = Qab + Qbc + Qca = UabIabsinjab + UbcIbcsinjbc + UcaIcasinjca = Iab2Xab + Ibc2Xbc + Ica2Xca .

В частном случае симметричной нагрузки эти мощности равны соответственно

P = 3UфIфcosjф =Ц 3UлIлcosjф, Q= 3UфIфsinjф =Ц 3UлIлsinjф

Полную мощность можно определить из треугольника мощностей как

В частном случае симметричной нагрузки полную мощность можно найти по формуле

S = Ц 3UлIл

Следует обратить внимание на то, что полная мощность трехфазной цепи не является суммой полных мощностей фаз

Пуск асинхронного двигателя

Пуск асинхронных двигателей можно производить при полном напряжении (прямой пуск) и при пониженном напряжении. Прямой пуск осуществляется при помощи рубильников, переключателей, пакетных выключателей, магнитных пускателей, контакторов и контроллеров. При прямом пуске к двигателю подается полное напряжение сети. Недостатком этого способа пуска являются большие пусковые токи, которые в 2—7 раз больше номинальных токов двигателей. Наиболее простым является прямой пуск асинхронных двигателей с короткозамкнутым ротором. Пуск и останов таких двигателей производится включением или отключением рубильника (магнитного пускателя) и т. П.

Пуск асинхронных двигателей с фазным ротором производится при помощи пускового реостата, подключаемого к обмотке ротора через кольца и щетки. Перед пуском двигателя необходимо убедиться что сопротивление пускового реостата полностью введено. В конце пуска реостат плавно выводится и закорачивается. Наличие активного сопротивления в цепи ротора при пуске приводит к уменьшению пускового тока и увеличению пускового момента

Для уменьшения пусковых токов асинхронных двигателей уменьшают напряжение, подводимое к обмоткам статора двигателя.

Пуск при помощи переключателя со звезды на треугольник. При пуске обмотка статора с помощью рубильника соединяется звездой и, как только двигатель разовьет максимально возможную для этого соединения скорость вращения, рубильник откидывается влево, обмотка статора оказывается включенной треугольником и двигатель получает возможность развить полную скорость. При этом способе пуска двигателя пусковой ток уменьшается в три раза

Элементы электрических цепей и схем. Классификация электрических цепей.

Все элементы электрических цепей можно разделить на три группы: источники (активные элементы), потребители и элементы для передачи электроэнергии от источников к потребителю (пассивные элементы).

Источником электрической энергии (генератором) называют устройство, преобразующее в электроэнергию какой-либо другой вид энергии (электромашинный генератор — механическую, гальванический элемент или аккумулятор — химическую, фотоэлектрическая батарея — лучистую и т.п.).Источники делятся на источники напряжения (Е,U=соnst, при изменении и I) и источники тока (I=соnst, при изменении U). Все источники имеют внутреннее сопротивление Rвн, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи .

Приемником электрической энергии (потребителем) называют устройство, преобразующее электроэнергию в какой-либо другой вид энергии (электродвигатель — в механическую, электронагреватель — в тепловую, источник света — в световую (лучистую) и т.п.).

Элементами передачи электроэнергии от источника питания к приемнику служат провода, устройства, обеспечивающие уровень и качество напряжения и др.

Условные обозначения элементов электрической цепи на схеме стандартизованы. Примеры:

— резистивный элемент (линейный),
— идеальный источник ЭДС, условно положительное направление ЭДС принято от отрицательного полюса к положительному (и совпадает с положительным направлением тока)
— нелинейный элемент,
— индуктивный элемент,
— емкостной элемент,
— полупроводниковый диод,
— плавкий предохранитель

Цепи, содержащие только линейные элементы, называют линейными цепями. Основное свойство таких цепей — применимость принципа наложения, заключающегося в том, что результирующая реакция линейной цепи на несколько приложенных одновременно возмущений равна сумме реакций, обусловленных каждым возмущением в отдельности.

Если цепь содержит один или несколько параметрических элементов, то ее называют параметрической (нестационарной).

Аналогично, если цепь содержит один или более нелинейных элементов, то ее называют нелинейной. Для нелинейной цепи в общем случае неприменим принцип наложения.

Цепь, содержащую элементы с сосредоточенными параметрами, называют цепью с сосредоточенными параметрами. Цепь, содержащую элементы с распределенными параметрами, называют цепью с распределенными параметрами.

Цепи, содержащие только взаимные элементы, называют взаимными (цепи, состоящие из резисторов, конденсаторов, индуктивных катушек, трансформаторов и источников энергии). Если в цепи имеются невзаимные элементы, то цепь называют невзаимной (цепи с электронными лампами, транзисторами, операционными усилителями).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *