Поверхность ограничивающая пласт сверху называется

Основные элементы пласта.

Пласт (слой) — геологическое тело, сложенное однородной осадочной породой, ограниченное двумя параллельными поверхностями напластования, имеющее примерно постоянную мощность и занимающее значительную площадь. Ряд слоев или пластов, перекрывающих (налегающих) и подстилающих друг друга и объединяющихся по какому-либо признаку (геологическому возрасту, происхождению, петрографическому признаку и т.д.), называют свитой. Слои горных пород можно наблюдать в обнажениях.

Название пласта обычно определяется составом слагающих его пород. Поверхность, ограничивающая пласт снизу, называется подошвой, сверху — кровлей.

В серии или пачке пластов кровля нижележащего пласта является одновременно подошвой покрывающего пласта. Толщина пласта называется его мощностью. Обычно различают истинную, вертикальную и горизонтальную мощность. Истинная мощность — кратчайшее расстояние между кровлей и подошвой пласта. Вертикальная мощность — расстояние по вертикали от любой точки кровли до подошвы пласта.

Горизонтальная мощность — расстояние по горизонтали от любой точки кровли до подошвы пласта.

Всякое отклонение пластов от первоначального горизонтального залегания называется дислокацией (нарушением). Дислокации бывают без разрыва сплошности слоев (пликативные дислокации) и с разрывом (дизъюнктивные дислокации).

Пространственное положение пласта характеризуется его простиранием и падением.

Простирание — линия пересечения кровли пласта с горизонтальной плоскостью; положение этой линии относительно стран света определяется азимутом простирания. Кровля и подошва слоя, а также любая плоскость внутри слоя, параллельная его кровле и подошве, имеет простирание. Эти простирания будут параллельными между собой. Простирания кровли, подошвы или другой им параллельной плоскости в пределах слоя условно считаются в то же время простиранием слоя.

Простирания тех или иных плоскостей и в том числе слоев (пластов, горизонтов) отличаются одно от другого своими азимутами.

Азимут — Угол между горизонтальной плоскостью меридиана и вертикальной плоскостью наблюдаемого объекта.

Падением называется наклон пласта по отношению к горизонтальной плоскости.

Падение слоя (кровли, подошвы и любой им параллельной плоскости в пределах слоя) характеризуется направлением падения и углом падения.

Направление падения определяется азимутом этого направления. Оно всегда перпендикулярно простиранию слоя.

Зная азимут падения слоя, можно вычислить оба азимута простирания того же слоя. Но если известен азимут простирания какого-либо слоя, то это не значит еще, что можно вычислить азимут падения. При одном и том же простирании падение может быть в двух направлениях.

Под углом падения слоя понимают телесный угол между горизонтальной плоскостью и плоскостью слоя. Телесный угол измеряется линейным углом, образованным перпендикулярами, восстановленными к линии простирания слоя, — один перпендикуляр в горизонтальной плоскости, другой в плоскости слоя

Азимуты простирания, падения и угол падения называются элементами залегания пласта и определяют его положение в пространстве.

66. Что такое складчатые деформации горных пород?

складкообразование, процесс смятия слоев горных пород в складки в результате тектонических деформаций. Комплексы складок различаются по форме, кинематическим условиям образования и происхождению.

По морфологическим признакам складчатые горные породы (дальше скл г п). разделяются на полную, голоморфную, или линейную (альпинотипную), состоящую из длинных узких складок, выпуклых (антиклиналей) и вогнутых (синклиналей), непрерывно заполняющих складчатую зону; прерывистую, или идиоморфную, представляющую собой группы отдельных, разрозненных, преимущественно антиклинальных складок разной формы (валы, купола, поднятия неправильных очертаний), разделённых участками спокойного залегания слоев; Скл. г. п. промежуточного типа (германотипную), складывающуюся из чередования широких пологих синклиналей и узких крутых антиклиналей (гребневидная) или антиклинальных складок «сундучной» формы (с крутыми крыльями и плоской вершиной) и щелевидных синклиналей.

По кинематическим условиям образования Скл. г. п. разделяется на глыбовую (штамповую, отражённую), общего смятия и глубинную (или метаморфогенную). Глыбовая Скл. г. п. образуется при изгибании слоев осадочного чехла над отдельными поднявшимися и опустившимися глыбами более древнего метаморфического (кристаллического) основания; морфологически это прерывистая Скл. г. п. Для складчатости нагнетания характерна различная (дисгармоничная) деформация разных по плотности и пластичности слоев: в пачке слоев, находящейся в условиях глубокого погружения и обладающих пониженной плотностью (например, соли) или большой пластичностью (например, глины), происходит перетекание материала, при котором он из одних мест выжимается, а в другие нагнетается; в последних образуются ядра нагнетания, приподнимающие вышележащие слои в виде купола или гребня. Морфологически складчатость нагнетания частично относится к типу прерывистой складчатости (например, диапировые купола с соляными ядрами), частично — к гребневидной разновидности промежуточного типа. Скл. г. п. общего смятия образуется под влиянием продольного, т. е. параллельного слоям, сжатия; поскольку первоначально слои залегают горизонтально, сжатие также горизонтально; морфологически эта складчатость относится к типу полной (линейной). Глубинная (или метаморфогенная) Скл. г. п. характеризуется чрезвычайной сложностью рисунка, в котором можно усмотреть результат наложения друг на друга складок разного порядка, формы и направления; такая складчатость могла образоваться, по-видимому, в обстановке течения пород при их большой пластичности под влиянием объёмных сил.

Происхождение С. г. п. во многом ещё неясно. В отношении складчатости нагнетания принято считать, что она связана преимущественно с инверсией плотностей в толще осадочных пород, т. е. с залеганием менее плотных пород под более плотными. Глубинная складчатость по условиям образования, по-видимому, родственна предыдущей. Под влиянием неравномерного нагревания в метаморфических породах слои сложно деформируются с образованием т. н. глубинных диапиров и, в частности, гранито-гнейсовых куполов. Уменьшение плотности пород и повышение их текучести происходят в процессе метаморфизма, когда идёт перекристаллизация и в поры породы выделяется из минералов конституционная и адсорбированная вода. Причины относительного перемещения блоков земной коры, ведущего к образованию глыбовой складчатости, неизвестны. Относительно происхождения складчатости общего смятия имеются две точки зрения. Согласно одной, такая складчатость образуется под влиянием сил горизонтального сжатия при надвигании (или поддвигании) одних глыб (плит) литосферы на (под) другие. Другая точка зрения отводит основную роль в образовании складчатости общего смятия силе тяжести: слои сминаются в складки по склонам горных хребтов, образованных вертикальными движениями коры, в результате оползания под тяжестью расходящихся в стороны приподнятых глыб коры или под распирающим действием внедряющихся в осадочную толщу глубинных диапиров.

Установлен ряд закономерностей в размещении различных типов С. г. п. Глыбовая складчатость образуется преимущественно в относительно спокойных областях земной коры — на Платформах, а также на окраинах подвижных зон — геосинклиналей. Складчатость нагнетания характерна для окраин геосинклиналей (главным образом для передовых прогибов) и для наиболее глубоко прогнутых частей платформ. С. г. п. общего смятия и глубинная характерны только для геосинклиналей, причём для определённой стадии их развития (стадии инверсии), когда внутри геосинклинали на месте глубоких прогибов начинают расти горные хребты. В результате С. г. п. геосинклинальная система превращается в складчатую систему.

67. Что такое антиклинальная и синклинальная складки?

Выделяются два основных типа складок: антиклинальная, в ядре которой залегают древние породы, и синклинальная, в ядре которой располагаются более молодые породы по сравнению с крыльями. Эти определения не меняются даже в том случае, если складки оказываются перевернутыми или опрокинутыми. Если невозможно определить кровлю или подошву слоев, например, в глубоко метаморфизованных породах, для определения изгиба слоев используют термины: антиформа, если слои изогнуты вверх, и синформа, если они изогнуты вниз. Сильно сжатые, или изоклинальные, складки, сложенные чаще всего глинистыми сланцами, аргиллитами, тонкими алевролитами, раскладываются на многочисленные, очень тонкие параллельные друг другу и осевой поверхности складки, пластинки и поперечный срез складки оказывается при этом рассеченным системой тонких трещин. Это явление называется кливажем. Образование кливажа связано с сильным сжатием, расплющиванием слоев по нормали к ним. В этом случае выделяются складки: прямые (симметричные) – осевая поверхность вертикальна; наклонные – осевая поверхность наклонена, но крылья падают в разные стороны, хотя и под разными углами; опрокинутые – осевая поверхность наклонная, крылья падают в одну и ту же сторону под разными или одинаковыми углами; лежачие – осевая поверхность горизонтальная; ныряющие – осевая поверхность «ныряет» ниже линии горизонта. По отношению осевой поверхности и крыльев выделяются складки: открытые — угол при вершине складки тупой; закрытые — угол при вершине складки острый; изоклинальные — осевая поверхность параллельна крыльям складки, что фиксирует сильную степень сжатия. По форме замка складки подразделяются на: гребневидные – узкие, острые антиклинали, разделенные широкими пологими синклиналями; килевидные — узкие острые синклинали, разделенные широкими, плоскими антиклиналями; сундучные или коробчатые – широкие плоские антиклинали и синклинали. По соотношению мощности пластов на крыльях и в замках выделяются подобные, концентрические, диапироидные и диапировые складки. Подобные– мощность на крыльях меньше, а в замках больше при сохранении угла наклона крыльев. Такая форма складки образуется при раздавливании крыльев и перетекании материала пластов в своды, или замки. Концентрические-мощность пластов в сводах и замках такая же, как и на крыльях, но с глубиной происходит изменение наклона слоев.

68. Перечислите элементы складок?

Элементы складки:

1 — Крыло. 2 — Замок. 3 — Ядро. 4 — Осевая поверхность. 5 — Шарнир.

Определения:

Замок складки — участок, где элементы залегания породы, слагающей складку, изменяются. Противопоставляется крылу складки — участку моноклинального залегания.

Ядро складки — внутренняя часть складки, ограниченная какой-либо поверхностью напластования.

Осевая поверхность — поверхность, равноудалённая от крыльев складки. В первом приближении — плоскость, состоящая из прямых, называемых осями складки.

Шарнир — кривая, образующаяся при пересечении осевой поверхностью поверхностей напластования.

Угол складки — угол между крыльями складки.

Сопряжённые складки — складки с общим крылом.

Формы залегания осадочных горных пород

Характерный признак осадочных горных пород — их слоис­тость.Данные породы сложены, в основном, из почти параллельных слоев (пластов), отличающихся друг от друга составом, структурой, твердостью и окраской. Поверхность, ограничивающая пласт снизу, называется подошвой,а сверху — кровлей.

Пласты осадочных пород могут залегать не только горизонтально, но и в виде складок(рис. 5.1), образовавшихся в ходе колебательных, тектонических и горообразовательных процессов. Изгиб пласта, направленный выпуклостью вверх, называется антиклиналью,а выпуклостью вниз — синклиналью.Соседние антиклиналь и синклиналь в совокупности образуют полную складку.

В России почти 90 % найденных нефти и газа находятся в ан­тиклиналях, за рубежом — около 70 %.

Рис. 5.1 Складка, образованная осадочными породами

Размеры антиклиналей составляют в среднем: длина 5… 10 км, ширина 2…3 км, высота 50…70 м. Однако известны и гигантские анти­клинали. Так, самое крупное в мире нефтяное месторождение Гавар (Саудовская Аравия) имеет размеры в плане 225×25 км и высоту 370 м, а газовое месторождение Уренгой (Россия): 120×30 км при высоте 200м.

По проницаемостигорные породы делятся на проницаемые (коллекторы) и непроницаемые (покрышки). Коллекторы- это лю­бые горные породы, которые могут вмещать в себя и отдавать жидкости и газы, а также пропускать их через себя при наличии перепада давле­ния. Встречаются следующие типы коллекторов:

1) поровые,состоящие из зернистых материалов (пески, песчаники и др.), пустотами в которых являются межзерновые поры;

2) кавернозные,пустоты в которых образованы полостями-кавернами различного происхождения (например, образованными врезультате растворения солей проникающими в породу поверхносты-ми водами);

3) трещиноватые,образованные из непроницаемых опор, но вмещающие в себя жидкости или газ за счет многочисленных микро-и макротрещин (трещиноватые известняки и др.);

4) смешанные(кавернозно-трещиноватые, трещиновато-поровые, кавернозно-поровые или кавернозно-трещиновато-поровые).

Наилучшими коллекторскими свойствами обладают поровые коллекторы. Неплохими способностями вмещать в себя и отдавать жидкости и газы, а также пропускать их через себя могут обладать и другие типы коллекторов. Так, на некоторых месторождениях Сау­довской Аравии взаимосвязанные системы трещин создают каналы.длиной до 30 км. К трещиноватым коллекторам за рубежом приуро­чено более 50 % открытых запасов нефти, а ^России -12%.

Покрышки- это практически непроницаемые горные породы Обычно ими бывают породы химического или смешанного происхождения, не нарушенные трещинами. Чаще всего роль покры­шек выполняют глины: смачиваясь водой, они разбухают и закрывают все поры и трещины в породе. Кроме того, покрышками могут быть каменная соль и известняки

Условия залегания

Каким бы ни был механизм образования углеводородов для формирования крупных скоплений нефти и газа необходимо выполнение ряда условий: наличие проницаемых горных пород (коллекторов), непроницаемых горных пород, ограничивающих перемещение нефти и газа по вертикали (покрышек), а также пласта особой формы, попав в который нефть и газ оказываются как бы в тупике (ловушке).

Рис. Типы ловушек

Миграция нефти и газа — основное условие формирования их скоплений. Миграция происходит в коллекторах вместе с пластовой водой, которая обычно насыщает поровое пространство. При этом нефть и газ либо растворены в воде, либо находятся в свободном состоянии. Миграция происходит из области высоких давлений в область относительно низких вдоль непроницаемых пород — покрышек. Попав в ловушку нефть, газ и вода под действием сил гравитации расслаиваются: газ, как самый легкий, уходит вверх, вода, как самая тяжелая, — вниз, нефть занимает промежуточное положение.

Скопление нефти и газа, сосредоточенное в ловушке в количестве, достаточном для промышленной разработки, называется залежью. Наиболее часто залежи углеводородов встречаются в ловушках антиклинального типа (рис. 5.3). В общем случае в верхней части продуктивного пласта располагается свободный газ (газовая шапка), внизу — вода, а между ними нефть.

Поверхность, разделяющая нефть и воду или нефть и газ, называется соответственноводонефтяным илигазонефтяным контактом. Линия пересечения поверхности контактов с кровлей пласта называется соответственновнешним контуром нефтеносности или газоносности, а с подошвой пласта -внутренним контуром нефтеносности или газоносности. Кратчайшее расстояние между кровлей и подошвой нефтегазоносного пласта называют его толщиной.

Рис. 5.3 Схема газонефтяной пластовой залежи:

ВКГ — внутренний контур газоносности;

ВНКГ — внешний контур газоносности;

ВКН — внутренний контур нефтеносности;

ВНКН — внешний контур нефтеносности.

Типы месторождений углеводородов

Подместорождением нефти и газа понимается совокупность залежей, приуроченных к общему участку земной поверхности. Понятия месторождение и залежь равнозначны, если на одной площади имеется всего одна залежь. Такое месторождение называется однопластовым. В остальных случаях месторождения являются многопластовыми. Например, на нефтяных месторождениях Апшеронского полуострова установлено до 30…40 залежей.

Если месторождение состоит из нефтяных или газонефтяных залежей, то оно соответственно называется нефтяным или газонефтяным Месторождение называют газовым, если оно содержит только газовые залежи, состоящие более, чем на 90 % из метана. К газоконденсатным относят такие газовые месторождения, из газа которых при снижении давления до атмосферного выделяется жидкая фаза — конденсат..

Рис. 5.7Схема многопластового нефтяного месторождения

Техника и технология поисков и разведки нефтегазовых месторождений.

Целью поисково-разведочных работ является выявление, оценка запасов и подготовка к разработке промышленных залежей нефти и газа.

Г е о л о г и ч е с к и е м е т о д ы

Проведение геологической съемки предшествует всем осталь­ным видам поисковых работ. Для этого геологи выезжают в исследуемый район и осуществляют так называемыеполевые работы. В ходе них они изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклона. Для анализа корен­ных пород, укрытых современными наносами, роются шурфы глубиной до 3 м. А с тем, чтобы получить представление о более глубоко залегающих породах бурят картировочные скважины глубиной до 600 м

По возвращении домой выполняются камеральные работы, т е. обработка материалов, собранных в ходе предыдущего этапа. Итогом камеральных работ являются геологическая карта и геологические разрезы местности (рис. 5.4).

Геологическая карта — это проекция выходов горных пород на дневную поверхность. Антиклиналь на геологической карте имеет вид овального пятна, в центре которого располагаются более древние по­роды, а на периферии — более молодые.

Однако как бы тщательно ни производилась геологическая съемка, она дает возможность судить о строении лишь верхней части горных пород. Чтобы «прощупать» глубокие недра используют геофизические методы.

Г е о ф и з и ч е с к и е м е т о д ы

К геофизическим методам относятся сейсморазведка, электроразведка и магниторазведка.

Сейсмическая разведка (рис. 5.5) основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн. Волны создаются одним из следующих способов: 1) взрывом специальных зарядов в скважинах глубиной до 30 м; 2) вибра­торами; 3) преобразователями взрывной энергии в механическую. Скорость распространения сейсмических волн в породах различной плот­ности неодинакова: чем плотнее порода, тем быстрее проникают сквозь нее волны. На границе раздела двух сред с различной плотностью упругие колебания частично отражаются, возвращаясь к поверхности земли,

Рис. 5.4 Антиклиналь на геологической карте и Рис. 5.5 Принципиальная схема сейсморазведки:

геологический разрез через нее по линии АВ 1 — источник упругих волн;

Породы: 1 — самые молодые; 2 — сейсмоприемники;

2 — менее молодые; 3 — сейсмостанция

3 — самые древние

а частично преломившись, продолжают свое движение вглубь недр до новой поверхности раздела. Отраженные сейсмические волны улавливаются сейсмоприемниками. Расшифровывая затем полученные графики колебаний земной поверхности, специалисты определяют глубину залегания пород, отразивших волны, и угол их наклона.

Электрическая разведка основана на различной электропровод­ности горных пород. Так, граниты, известняки, песчаники, насыщенные соленой минерализованной водой, хорошо проводят электрический ток, а глины, песчаники, насыщенные нефтью, обладают очень низкой элект­ропроводностью.

Принципиальная схема электроразведки с поверхности земли приведена на рис. 5.6. Через металлические стержни А и В сквозь грунт пропускается электрический ток, а с помощью стержней М и N и специальной аппаратуры исследуется искусственно созданное электрическое поле. На основании выполненных замеров определяют электрическое сопротивление горных пород. Высокое электросопротивление является косвенным признаком наличия нефти или газа.

Магниторазведка основана на различной магнитной проницае­мости горных пород. Наша планета — это огромный магнит, вокруг которого расположено магнитное поле. В зависимости от состава горных пород, наличия нефти и газа это магнитное поле искажается в различной степени. Часто магнитомеры устанавливают на самолеты, которые на определенной высоте совершают облеты исследуемой территории. Аэромагнитная съемка позволяет выявить антиклинали на глубине до 7 км, даже если их высота составляет не более 200…300 м.

Геологическими и геофизическими методами, главным образом, выявляют строение толщи осадочных пород и возможные ловушки для нефти и газа. Однако наличие ловушки еще не означает присутствия нефтяной или газовой залежи. Выявить из общего числа обнаруженных структур те, которые наиболее перспективны на нефть и газ, без бурения скважин помогают гидрогеохимические методы исследования недр.

Г и д р о г е о х и м и ч е с к и е м е т о д ы

К гидрогеохимическим относят газовую, люминесцентно-биту-монологическую, радиоактивную съемки и гидрохимический метод.

Рис. 5.6 Принципиальная схема электроразведки

Газовая съемка заключается в определении присутствия углеводородных газов в пробах горных пород и грунтовых вод, отобранных с глубины от 2 до 50 м. Вокруг любой нефтяной и газовой залежи образуется ореол рассеяния углеводородных газов за счет их фильтрации и диффузии по порам и трещинам пород. С помощью газоанализаторов, имеющих чувствительность 10″5 …10’*’ %, фиксируется повышенное содержание углеводородных газов в пробах, отобранных непосредственно над залежью. Недостаток метода заключается в том, что аномалия может быть смещена относительно залежи (за счет на­клонного залегания покрывающих пластов, например) или же быть связана с непромышленными залежами.

Применение люминесцентно-битуминологической съемки основано на том, что над залежами нефти увеличено содержание 6итумов в породе, с одной стороны, и на явлении свечения битумов в ультрафиолетовом свете, с другой. По характеру свечения отобранной пробы породы делают вывод о наличии нефти в предполагаемой залежи.

Известно, что в любом месте нашей планеты имеется так называемый радиационный фон, обусловленный наличием в ее недрах радиоактивных трансурановых элементов, а также воздействием космического излучения. Специалистам удалось установить, что над нефтяными и газовыми залежами радиационный фон понижен.Радиоактивная съемка выполняется с целью обнаружения указанных аномалий радиационного фона. Недостатком метода является то, что радиоактивные аномалии в приповерхностных слоях могут быть обусловлены рядом других естественных причин. Поэтому данный метод пока применяется ограниченно.

Гидрохимический метод основан на изучении химического состава подземных вод и содержания в них растворенных газов. По мере приближения к залежи концентрация этих компонентов в водах возрастает, что позволяет сделать вывод о наличии в ловушках нефти или газа.

Лекция 3.Назначение и конструкции нефтяных скважин на суше и на море. Буровое и промысловое оборудование.Буровые растворы. Морские нефтегазовые сооружения..Классификация способов бурения

Назначение и конструкции нефтяных скважин на суше и на море.

Скважиной называют горную выработку круглого сечения, сооружаемую без доступа в нее людей, у которой длина во много раз больше диаметра.

Верхняя часть скважины называется устьем, дно — забоем,боковая поверхность — стенкой, а пространство, ограниченное стенкой -стволом скважины.Длина скважины — это расстояние от устья до забоя по оси ствола, аглубина — проекция длины на вертикальную ось. Длина и глубина численно равны только для вертикальных скважин. Однако они не совпадают у наклонных и искривленных скважин.

Элементы конструкции скважин приведены на рис. 6.1. Начальный участок I скважин называютнаправлением. Поскольку устье скважины лежит в зоне легкоразмываемых пород его необходимо укреплять. В связи с этим направление выполняют следующим образом. Сначала бурят шурф — колодец до глубины залегания устойчивых горных пород (4…8 м). Затем в него устанавливают трубу необходимой длины и диаметра, а пространство между стенками шурфа и трубой заполняют бутовым камнем и заливают цементным раствором 2.

Нижерасположенные участки скважины — цилиндрические. Сразу за направлением бурится участок на глубину от 50 до 400 м диаметром до 900 мм. Этот участок скважины закрепляют обсадной трубой 1 (состоящей из свинченных стальных труб), которую называюткондуктором II.

Затрубное пространство кондуктора цементируют. С помощью кондуктора изолируют неустойчивые, мягкие и трещиноватые поро­ды, осложняющие процесс бурения.

После установки кондуктора не всегда удается пробурить скважину до проектной глубины из-за прохождения новых осложняющих горизонтов или из-за необходимости перекрытия продуктивных пластов, которые не планируется эксплуатировать данной скважиной. В таких случаях устанавливают и цементируют еще одну колонну III, называемуюпромежуточной.

Если продуктивный пласт, для разработки которого предназначена скважина, залегает очень глубоко, то количество промежуточных колонн может быть больше одной.

Последний участок IV скважины закрепляютэксплуатационной колонной. Она предназначена для подъема нефти и газа от забоя к устью скважины или для нагнетания воды (газа) в продуктивный пласт с целью поддержания давления в нем. Во избежание перетоков нефти и газа в вышележащие горизонты, а воды в продуктивные пласты пространство между стенкой эксплуатационной колонны и стенкой скважины заполняют цементным раствором.

В устойчивых породах призабойную зону скважины обору­дуют различными фильтрами и не цементируют или обсадную колонну опускают только до кровли продуктивного пласта, а его разбуривание и эксплуатацию производят без крепления ствола скважины.

Устье скважины в зависимости от ее назначения оборудуют арматурой (колонная головка, задвижки, крестовина и др.).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *