Хромосомный механизм определения пола

Содержание

Закон Моргана. Хромосомная теория наследственности. Наследование, сцепленное с полом. Полное и неполное сцепление генов. Понятие о генетических картах хромосом.

⇐ ПредыдущаяСтр 15 из 23

Механизм наследования сцепленных генов, а также местоположение некоторых сцепленных генов установил американский генетик и эмбриолог Т. Морган. Он показал, что закон независимого наследования, сформулированный Менделем, действителен только в тех случаях, когда гены, несущие независимые признаки, локализованы в разных негомологичных хромосомах. Если же гены находятся в одной и той же хромосоме, то наследование признаков происходит совместно, т. е. сцепленно. Это явление стали называть сцепленным наследованием, а также законом сцепления или законом Моргана.

Закон сцепления гласит: сцепленные гены, расположеные в одной хромосоме, наследуются совместно (сцепленно).Группа сцепления — все гены одной хромосомы. Число групп сцепления равно количеству хромосом в гаплоидном наборе. Например, у человека 46 хромосом — 23 группы сцепления, у гороха 14 хромосом — 7 групп сцепления, у плодовой мушки дрозофилы 8 хромосом — 4 группы сцепления.Неполное сцепление генов — результат кроссинговера между сцепленными генами, поэтому полное сцепление генов возможно у организмов, в клетках которых кроссинговер в норме не происходит.

ХРОМОСОМНАЯ ТЕОРИЯ МОРГАНА. ОСНОВНЫЕ ПОЛОЖЕНИЯ.

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

1)гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;

2)каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

3)гены расположены в хромосомах в определенной линейной последовательности;

4)гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

5)сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;

6)каждый вид имеет характерный только для него набор хромосом — кариотип.

Наследование, сцепленное с полом — это наследование какого-либо гена, находящегося в половых хромосомах. При наследственности, связанной с Y-хромосомой, признак или болезнь проявляется исключительно у мужчины, поскольку эта половая хромосома отсутствует в хромосомном наборе женщины. Наследственность, связанная с Х-хромосомой, может быть доминантной или рецессивной в женском организме, но она всегда присутствует в мужском, поскольку в нем насчитывается только одна Х-хромосома. Наследование болезни сцепленное с полом, связанно, главным образом, с половой Х-хромосомой. Большинство наследственных болезней (тех или иных патологических признаков), связанных с полом, передаются рецессивно. Таких болезней насчитывается около 100. Женщина-носительница патологического признака сама не страдает, так как здоровая Х-хромосома доминирует и подавляет Х-хромосому с патологическим признаком, т.е. компенсирует неполноценность данной хромосомы. При этом болезнь проявляется только у лиц мужского пола. По рецессивному сцепленному с Х-хромосомой типу, передаются: дальтонизм (красно-зелёная слепота), атрофия зрительных нервов, куриная слепота, миопия Дюшена, синдром «курчавых волос» (возникает в результате нарушения обмена меди, повышения её содержания в тканях, проявляется слабоокрашенными, редкими и выпадающими волосами, умственной отсталостью и т.д.), дефект ферментов переводящих пуриновые основания в нуклеотиды (сопровождается нарушением синтеза ДНК в виде синдрома Леша-Найена, проявляющегося умственной отсталостью, агрессивным поведением, членовредительством), гемофилия А (в результате недостатка антигемофильного глобулина — фактора VIII), гемофилия В (в результате дефицита фактора Кристмаса — фактора IX) и т.д. По доминантному сцепленному с Х-хромосомой типу передаются гипофосфатемический рахит (не поддающийся лечению витаминами D2 и D3), коричневая эмаль зубов и др. Данные заболевания развиваются у лиц и мужского, и женского пола.

Полное и неполное сцепление генов.

Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть: полным, если между генами, относящимися к одной группе сцепления, рекомбинация невозможна и неполным, если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

Генетические карты хромосом.

Это схемы относительного расположения сцепленных между собой

наследственных факторов — генов. Г. к. х. отображают реально

существующий линейный порядок размещения генов в хромосомах (см. Цитологические карты хромосом) и важны как в теоретических исследованиях, так и при проведении селекционной работы, т.к. позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Имея Г. к. х., можно по наследованию «сигнального» гена, тесно сцепленного с изучаемым, контролировать передачу потомству генов, обусловливающих развитие трудно анализируемых признаков; например, ген, определяющий эндосперм у кукурузы и находящийся в 9-й хромосоме, сцеплен с геном, определяющим пониженную жизнеспособность растения.

85. Хромосомный механизм наследования пола. Цитогенетические методы определения пола.

Пол характеризуется комплексом признаков, определяемых генами, расположенными в хромосомах. У видов с раздельнополыми особями хромосомный комплекс самцов и самок неодинаков, цитологически они отличаются по одной паре хромосом, ее назвали половыми хромосомами. Одинаковые хромосомы этой пары назвали X(икс)- хромосомами. Непарную, отсутствующую у другого пола- Y (игрек)- хромосомой; остальные, по которым нет различий аутосомами (А). У человека 23 пары хромосом. Из них 22 пары аутосом и 1 пара половых хромосом. Пол с одинаковыми хромосомами XX, образующий один тип гамет (с X- хромосомой), называют гомогаметным,другой пол, с разными хромосомами XY, образующий два типа гамет (с X-хромосомой и с Y-хромосомой), — гетерогаметным. У человека, млекопитающих и других организмов гетерогаметный пол мужской; у птиц, бабочек — женский.

X- хромосомы, помимо генов, определяющих женский пол, содержат гены, не имеющие отношения к полу. Признаки, определяемые хромосомами, называются признаками, сцепленными с полом. У человека такими признаками являются дальтонизм (цветная слепота) и гемофилия (несвертываемость крови). Эти аномалии рецессивны, у женщин такие признаки не проявляются, если даже эти гены несет одна из X- хромосом; такая женщина является носительницей и передает их с Х — хромосомой своим сыновьям.

Цитогенетический метод определения пола. Он основан на микроскопическом изучении хромосом в клетках человека. Применение цито генетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. В качестве экспресс- метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматинав неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х- хромосом. При увеличении количества Х — хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа хромосом. При уменьшении числа хромосом тельце отсутствует. В мужском кариотипе Y- хромосома может быть обнаружена по более интенсивной люмисценции по сравнению с другими хромосомами при обработке их акрихинипритом и изучении в ультрафиолетовом свете.

Особенности строения хромосом. Уровни организации наследственного материала. Гетеро- и эухроматин.

Морфология хромосом

При микроскопическом анализе хромосом, прежде всего, видны различия их по форме и величине. Строение каждой хромосомы сугубо индивидуальное. Можно заметить также, что хромосомы обладают общими морфологическими признаками. Они состоят из двух нитей — хроматид, расположенных параллельно и соединенных между собой в одной точке, названной центромерой или первичной перетяжкой. На некоторых хромосомах можно видеть и вторичную перетяжку. Она является характерным признаком, позволяющим идентифицировать отдельные хромосомы в клетке. Если вторичная перетяжка расположена близко к концу хромосомы, то дистальный участок, ограниченный ею, называют спутником. Хромосомы, содержащие спутник, обозначаются как АТ-хромосомы. На некоторых из них в телофазе происходит образование ядрышек.
Концевые участки хромосом имеют особую структуру и называются теломерами. Теломерные районы обладают определенной полярностью, препятствующей их соединению друг с другом при разрывах или со свободными концами хромосом.

Участок хроматиды (хромосомы) от теломеры до центромеры называют плечом хромосомы. Каждая хромосома имеет два плеча. В зависимости от соотношения длин плеч выделяют три типа хромосом: 1) метацентрические (равноплечие); 2) субметацентрические (неравноплечие); 3) акроцентрические, у которых одно плечо очень короткое и не всегда четко различимо. (р — короткое плечо, q — длинное плечо). Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков: гистонов и протомите (в половых клетках), которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями. Белки составляют значительную часть вещества хромосом. На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки.
Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная роль. Кроме того, эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах.

Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, редупликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. Помимо ДНК и белков в составе хромосом обнаруживаются также РНК, липиды, полисахариды, ионы металлов.

Пол организма. Хромосомный механизм наследования пола. Роль генотипа и среды в развитии признаков пола.

Пол организма.

Пол особи — это сложный признак, формируемый как действием генов, так и условиями развития. У человека одна из 23 пар хромосом — половые хромосомы, обозначаемые как X и Y. Женщины — гомогаметный пол, т.е. имеют две X-хромосомы, одну — полученную от матери, а другую — от отца. Мужчины — гетерогаметный пол, имеют одну X- одну Y-хромосому, причем X передается от матери, а Y — от отца. Заметим, что гетерогаметный пол не всегда обязательно мужской; например, у птиц это самки, в то время как самцы гомогаметны. Имеются и другие механизмы детерминации пола. Так, у ряда насекомых Y-хромосома отсутствует. При этом один из полов развивается при наличии двух X-хромосом, а другой — при наличии одной X-хромосомы. У некоторых насекомых пол определяется соотношением числа аутосом и половых хромосом. У ряда животных может происходить т.н. переопределение пола, когда в зависимости от факторов внешней среды зигота развивается либо в самку, либо в самца. Развитие пола у растений имеет столь же разнообразные генетические механизмы, как и у животных.

Хромосомный механизм наследования пола.

Признаки, сцепленные с X-хромосомой. Если ген находится в половой хромосоме (его называют сцепленным с полом), то проявление его у потомков следует иным, чем для аутосомых генов, правилам. Рассмотрим гены, находящиеся в X-хромосоме. Дочь наследует две X-хромосомы: одну — от матери, а другую — от отца. Сын же имеет только одну X-хромосому — от матери; от отца же он получает Y-хромосому. Поэтому отец передает гены, имеющиеся в его X-хромосоме, только своей дочери, сын же их получить не может. Поскольку X-хромосома более «богата» генами по сравнению с Y-хромосомой, то в этом смысле дочь генетически более схожа с отцом, чем сын; сын же более схож с матерью, чем с отцом.

Один из исторически наиболее известных сцепленных с полом признаков у человека — это гемофилия, приводящая к тяжелым кровотечениям при малейших порезах и обширным гематомам при ушибах. Она вызывается рецессивным дефектным аллелем 0, блокирующим синтез белка, необходимого для свертывания крови. Ген этого белка локализован в Х-хромосоме. Гетерозиготная женщина +0 (+ означает нормальный активный аллель, доминантный по отношению к аллелю гемофилии 0) не заболевает гемофилией, и ее дочери тоже, если у отца нет этой патологии. Однако ее сын может получить аллель 0, и тогда у него развивается гемофилия. Рецессивные заболевания, вызываемые генами X-хромосомы, намного реже поражают женщин, чем мужчин, поскольку у них заболевание проявляется только при гомозиготности — наличии рецессивного аллеля в каждой из двух гомологичных X-хромосом; мужчины заболевают во всех случаях, когда их единственная X-хромосома несет дефектный аллель.

Сцепление с Y-хромосомой. Сведения о генах, находящихся в Y-хромосоме, весьма скудны. Предполагается, что она практически не несет генов, обусловливающих синтез белков, необходимых для функционирования клетки. Но она играет ключевую роль в развитии мужского фенотипа. Отсутствие Y-хромосомы при наличии только одной X-хромосомы приводит к т.н. синдрому Тернера: развитию женского фенотипа с плохо развитыми первичными и вторичными половыми признаками и другими отклонениями от нормы. Встречаются мужчины с добавочной Y-хромосомой (XYY); они высокого роста, агрессивны и нередко аномального поведения. В Y-хромосоме выявлено несколько генов, ответственных за регуляцию синтеза специфических ферментов и гормонов, и нарушения в них приводят к патологиям полового развития. Имеется ряд морфологических признаков, которые, как полагают, определяются генами Y-хромосомы; среди них — развитие волосяного покрова ушей. Подобного рода признаки передаются только по мужской линии: от отца к сыну.

Роль генотипа и среды в развитии признаков пола.

Генетическая детерминация пола, определяемая набором половых хромосом, поддерживает равное воспроизводство самок и самцов. Действительно, женские яйцеклетки содержат только X-хромосому, поскольку женщины имеют генотип XX по половым хромосомам. Генотип же мужчин — XY, и потому рождение девочки или мальчика в каждом конкретном случае определяется тем, несет ли спермий X- или Y-хромосому. Поскольку же в процессе мейоза хромосомы имеют равные шансы попасть в гамету, то половина гамет, производимых индивидами мужского пола, содержит X-, а половина — Y-хромосому. Поэтому половина потомков ожидается одного пола, а половина — другого.

Следует подчеркнуть, что предсказать заранее рождение мальчика или девочки невозможно, поскольку невозможно предугадать, какая мужская половая клетка будет участвовать в оплодотворении яйцеклетки: несущая X- или Y-хромосому. Поэтому наличие большего или меньшего числа мальчиков в семье — дело случая.

Лекция № 19. Генетика пола

Хромосомное определение пола

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы. У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека — Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина — Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный. Если образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому — мужской.

У животных можно выделить следующие четыре типа хромосомного определения пола.

  1. Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (ХY) (млекопитающие, в частности, человек, дрозофила).

    Генетическая схема хромосомного определения пола у человека:

    Р ♀46, XX × ♂46, XY
    Типы гамет 23, X 23, X 23, Y
    F 46, XX
    женские особи, 50%
    46, XY
    мужские особи, 50%

    Генетическая схема хромосомного определения пола у дрозофилы:

    Р ♀8, XX × ♂8, XY
    Типы гамет 4, X 4, X 4, Y
    F 8, XX
    женские особи, 50%
    8, XY
    мужские особи, 50%
  2. Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (Х0) (прямокрылые).

    Генетическая схема хромосомного определения пола у пустынной саранчи:

    Р ♀24, XX × ♂23, X0
    Типы гамет 12, X 12, X 11, 0
    F 24, XX
    женские особи, 50%
    23, X0
    мужские особи, 50%
  3. Женский пол — гетерогаметен (ХY), мужской — гомогаметен (ХХ) (птицы, пресмыкающиеся).

    Генетическая схема хромосомного определения пола у голубя:

    Р ♀80, XY × ♂80, XX
    Типы гамет 40, X 40, Y 40, X
    F 80, XY
    женские особи, 50%
    80, XX
    мужские особи, 50%
  4. Женский пол — гетерогаметен (Х0), мужской — гомогаметен (ХХ) (некоторые виды насекомых).

    Генетическая схема хромосомного определения пола у моли:

    Р ♀61, X0 × ♂62, XX
    Типы гамет 31, X 30, Y 31, X
    F 61, X0
    женские особи, 50%
    62, XX
    мужские особи, 50%

Наследование признаков, сцепленных с полом

Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме (ХА — красный цвет глаз, Ха — белый цвет глаз), а Y-хромосома таких генов не содержит.

Р ♀XAXA
красноглазые
× ♂XaY
белоглазые
Типы гамет XA Xa Y
F1 XAXa
♀ красноглазые
50%
XАY
♂ красноглазые
50%
Р ♀XAXa
красноглазые
× ♂XAY
красноглазые
Типы гамет XA Xa XA Y
F2 XAXA XAXa
♀ красноглазые
50%
XАY
♂ красноглазые
25%
XaY
♂ белоглазые
25%
Р ♀XaXa
белоглазые
× ♂XAY
красноглазые
Типы гамет Xa XA Y
F1 XAXa
♀ красноглазые
50%
XaY
♂ белоглазые
50%
Р ♀XAXa
красноглазые
× ♂XaY
белоглазые
Типы гамет XA Xa Xa Y
F2 XAXA
♀ красноглазые
25%
XaXa
♀ белоглазые
25%
XАY
♂ красноглазые
25%
XaY
♂ белоглазые
25%

Схема половых хромосом человека и сцепленных с ними генов:
1 — Х-хромосома; 2 — Y-хромосома.

У людей мужчина получает Х-хромосому от матери, Y-хромосому — от отца. Женщина получает одну Х-хромосому от матери, другую Х-хромосому от отца. Х-хромосома — средняя субметацентрическая, Y-хромосома — мелкая акроцентрическая; Х-хромосома и Y-хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х-хромосомы (с генами, имеющимися только в Х-хромосоме); 2) гомологичный участок Х-хромосомы и Y-хромосомы (с генами, имеющимися как в Х-хромосоме, так и в Y-хромосоме); 3) негомологичный участок Y-хромосомы (с генами, имеющимися только в Y-хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

Тип наследования Локализация генов Примеры
Х-сцепленный рецессивный Негомологичный участок Х-хромосомы Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х-сцепленный доминантный Негомологичный участок Х-хромосомы Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y-сцепленный (частично сцепленный с полом) Гомологичный участок Х- и Y-хромосом Синдром Альпорта, общая цветовая слепота
Y-сцепленный Негомологичный участок Y-хромосомы Перепончатость пальцев ног, гипертрихоз края ушной раковины

Большинство генов, сцепленных с Х-хромосомой, отсутствуют в Y-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если ХА — нормальная свертываемость крови, Ха — гемофилия и если женщина является носительницей гена гемофилии, то у фенотипически здоровых родителей может родиться сын-гемофилик:

Р ♀XAXa
норм. сверт. крови
× ♂XAY
норм. сверт. крови
Типы гамет XA Xa XA Y
F2 XAXA XАXa
♀ норм. сверт. крови
50%
XАY
♂ норм. сверт. крови
25%
XaY
♂ гемофилики
25%

III. Хромосомный механизм детерминации и формирование признаков пола у человека

В формировании признаков пола выделяют четыре уровня:

  • хромосомное определение пола;

  • определение пола на уровне гонад;

  • фенотипическое определение пола (половых признаков);

  • психологическое определение пола.

Хромосомное определение пола у животных и человека происходит в момент оплодотворения. Для человека это формирование кариотипа 46 XX или 46 ХУ, что определяется гаметой гетерогаметного пола. У человека женский пол гомогаметный, а мужской пол гетерогаметный. У птиц и бабочек, наоборот, самцы гомогаметные, а самки — гетерогаметные. У прямокрылых насекомых самки гомогаметны, с кариотип XX, а самцы гетерогаметны — ХО, у последних отсутствует у-хромосома.

Определение пола на уровне гонад у человека начинается с того, что на 3 — й неделе эмбрионального развития в энтодерме желточного мешка появляются первичные зародышевые клетки, которые под действием хемотаксических сигналов мигрируют в область закладки гонад (половых желез). Дальнейшее развитие признаков пола определяется наличием или отсутствием в кариотипе у-хромосомы.

Семенники развиваются, если имеется Y-хромосома. Под контролем у-хромосомы в первичных зародышевых клетках начинает синтезироваться Н-Y-антиген, который кодируется структурным аутосомным геном, контролируемым Y-хромосомой. Для превращения зачатка гонады в семенник дос­таточно уже малой концентрации Н-Y-антигена. На развитие семенников также оказывает влияние, по меньшей мере, ещё 19 генов: аутосомных и сцепленных с Х-хромосомой. А под действием хориогонического гонадотропина, секретируемого плацентой матери, в семенниках начинают вырабатываться мужские половые гормоны (андрогены) — это тестостерон и 5-дигидро-тестостерон.

Фенотипическое определение пола в виде развития внутренних и наружных половых органов и развития всего фенотипа по мужскому типу происходит следующим образом. Сцепленный с X-хромосомой ген (Tfm+) кодирует белок-рецептор, который, связываясь с тестостероном, доставляет его в ядра клеток, где тестостерон активизирует гены, обеспечивающие дифференцировку развивающегося организма по мужскому типу, в том числе и развитие семявыносящих путей. У зародыша человека из протока первичной почки формируются два протока: мюллеров и вольфов. У мужчин редуцируются мюллеровы протоки, а вольфовы преобразуются в семенные протоки и семенные пузырьки. При мутации гена Tfm+ и дефекте, рецепторов тесто­стерона может развиться синдром тестикулярной феминизации. В таких случаях у лиц с мужским кариотипом наружные половые органы развиваются по женскому типу. При этом влагалище бывает укорочено и заканчивается слепым мешком, а матка и маточных трубы отсутствуют. По пропорциям тела такие женщины приближаются к типу манекенщиц. Отмечается аменорея (отсутствие менструаций). В то же время молочные железы развиты нор­мально. Психологическое развитие у них осуществляется по женскому типу, хотя имеет место мужской кариотип и вместо яичников у них присутствуют семенники, которые располагаются либо в больших половых губах, либо в паховом канале, либо в брюшной полости. Сперматогенез отсутствует.

Рецепторы к гормонам имеют не только клетки-мишени тех или иных половых органов, но и нейроны головного мозга. Влияние гормонов на головной мозг начинается уже в эмбриональном периоде, что сказывается в дальнейшем и на особенностях сексуального поведения.

Если в кариотипе зиготы отсутствует У — хромосома, формируется женский фенотип без участия специальных регуляторных факторов. При этом из двух протоков, формирующихся из протока первичной почки, вольфов проток редуцируется, а мюллеровы преобразуются в матку и маточные трубы.

14.1. Детерминация пола

Принадлежность организмов к тому или иному полу часто является результатом сложного взаимодействия генетических, экологических, физиологических, а иногда и психологических факторов. Однако решающее значение имеет тот «выбор», который осуществляется при детерминации.

Детерминация пола – исходное направление развития организма в сторону мужского или женского пола вследствие определенных факторов.

У высших организмов генетическая детерминация обычно выражается мужским или женским кариотипом зиготы, образующимся в момент оплодотворения. Наблюдается несколько вариантов генетической детерминации пола, но наиболее общая тенденция – это различные сочетания половых хромосом у разных полов.

Варианты половых кариотипов в природе рассматривались нами ранее. Однако не сам половой кариотип является непосредственным фактором детерминации пола. Этим фактором служит стартовый сигнал, воспринимаемый «ключевым» геном. Одинаковые половые кариотипы могут участвовать в разных механизмах детерминации. Таких механизмов в природе встречается множество. У высших животных процессы формирования пола проходят более сложно, но единообразнее. Рассмотрим некоторые варианты детерминации пола.

У дрозофилы контролирующим сигналом является соотношение числа Х-хромосом и гаплоидных наборов аутосом. Соотношение 1 дает самок, а 0,5 – самцов. Анеуплоидия по половым хромосомам, сдвигающая это соотношение, дает либо интерсексов, либо бесплодных особей с гипертрофированными половыми признаками (сверхсамка и сверхсамец). Это открытие, сделанное американским генетиком К. Бриджесом в 1921 г., легло в основу балансовой теории детерминации пола. Ключевым геном, «улавливающим» баланс хромосом кариотипа дрозофилы(по соотношению белковых продуктов определенных генов), является ген Sxl (Sex lethal). В зависимости от баланса хромосом ген Sxl экспрессируется по-разному, и сложные каскады других регуляторных генов расходятся в направлении мужского или женского пола.

Широко представлена в природе, в частности у многих рептилий, и так называемая экологическая детерминация, когда пол определяется внешними условиями (температурой, продолжительностью светового дня). При этом создается впечатление независимости детерминации от генетических характеристик. Но современная биология развития рассматривает влияние внешней среды как сигнал, «включающий» или «выключающий» ключевой ген. На роль такого стартового гена-переключателя, запускающего генетические механизмы определения пола у яйцекладущих форм, претендует гипотетический фактор Testis Determining Factor (TDF). Вероятно, он кодирует белки, регулирующие экспрессию важнейших генов, участвующих в процессе детерминации пола.

У млекопитающих, имеющих одинаковые с дрозофилой половые кариотипы, мы видим другой механизм детерминации пола, в котором основное значение имеет наличие Y-хромосомы. Она направляет развитие в сторону мужского пола при любом количестве Х-хромосом.

Определяющую роль в процессе детерминации пола у млекопитающих в настоящее время придают гену SRY (Sex determining region Y gene) Y-хромосомы. Эта роль была продемонстрирована в случаях инверсии пола у XX-самцов, содержащих транслоцированный участок с SRY-геном. Ген SRY запускает каскадные процессы дифференциации пола. Однако процессы детерминации пола у млекопитающих проходят на многих уровнях, с привлечением большого числа взаимодействующих генов. Кроме гена SRY, в них участвуют другие регуляторные гены (около двух десятков), формирующие многочисленные «каскады». Некоторые из этих генов при повышенной экспрессии способны преодолеть стартовый сигнал гена SRY и перенаправить развитие пола. Таким эффектом обладает, например, Х-сцепленный ген Dax, вызывающий при дупликации инверсию пола, что было обнаружено у ХY-самок. Наибольшее значение в формирующихся каскадах играют геныDMRT 1, Dhh, ген Tas, локализованный у мышей на аутосоме 17, ген Sox-9. Некоторые гены, участвующие в детерминации пола, экспрессируются только у самок и предположительно репрессируются у самцов геном SRY.

Эти наблюдения показывают, что в процессах детерминации пола млекопитающих задействованы не только гены Y-хромосомы, но и гены Х-хромосомы и аутосом. Существует, например, белковый фактор SF-1 – регулятор генов для всех ферментов синтеза стероидов, к которым относятся половые гормоны. Дефект гена SF-1 может привести к отсутствию дифференцированных гонад у обоих полов независимо от кариотипа.

Таким образом, при детерминации пола особенно трудно провести четкие временные границы. Можно добавить, что до сих пор во многом не ясно соподчинение генетических механизмов детерминации.

Данный текст является ознакомительным фрагментом.
Читать книгу целиком
Поделитесь на страничке

Следующая глава >

Хромосомный механизм определения пола

Фенотипические различия между особями разного пола обусловлены генотипом. Гены находятся в хромосомах. Диплоидный набор хромосом называют кариотипом. В женском и мужском кариотипе 23 пары (46) хромосом. 22 пары хромосом одинаковы, их называют аутосомами. 23—я пара хромосом — половые хромосомы. В женском кариотипе одинаковые половые хромосомы — XX. В мужском организме половые хромосомы — XY. Y-хромосома мала и содержит мало генов. Пол наследуется как менделирующий признак. Сочетание половых хромосом в зиготе определяет пол будущего организма. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы + Х-хромосома. Организм, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным.

Сперматозоиды дают гаметы двух видов: половина содержит 22 аутосомы + Х-половую хромосому, и половина содержит 22 аутосомы + Y-половую хромосому. Организм, образующий разные гаметы, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения и зависит от того, каким сперматозоидом будет оплодотворена данная яйцеклетка. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х-хромосому, развивается женский организм, если Y—хромосому — мужской. Теоретически вероятность рождения мальчика и девочки равна 1:1 или 50%:50%. Однако, рождается больше мальчиков, но т.к. мужской организм имеет всего одну Х-хромосому, и все гены (доминантные и рецессивные) проявляют свое действие, то мужской организм менее жизнеспособен.

Такое определение пола характерно для человека и млекопитающих.

У некоторых насекомых (кузнечики, тараканы) нет Y-хромосомы. Самец имеет одну Х-хромосому, а самка две XX. У пчел самки имеют 2п набор хромосом (32 хромосомы), а самцы — п (16) хромосом. Самки развиваются из оплодотворенных яиц, а самцы из неоплодотворенных. У птиц и бабочек самки гетерогаметны и имеют ZW половые хромосомы, а самцы гомогаметны и имеют ZZ половые хромосомы.

У некоторых организмов пол зависит от факторов внешней среды. Например, у морского червя боннелии личинки бесполы. Если личинка попадает на ротовую лопасть самки, из нее развиваются микроскопические самцы, и наоборот, из личинки образуются самки, если она не контактировала с самкой.

У женщин в соматических клетках, кроме аутосом, присутствуют две половые ХХ-хромосомы. Одна из них выявляется, образуя глыбку хроматина, заметную в интерфазных ядрах при обработке красителями. Это Х-хроматин или тельце Барра. Эта хромосома спирализована и неактивна. Вторая хромосома сохраняет свою активность. В клетках мужского и женского организмов содержится по одной активной Х-хромосоме.

Тельце Барра в клетках мужчин не выявляется. Если при мейозе произойдет не расхождение хромосом, то в одну яйцеклетку попадут две ХХ-хромосомы. При оплодотворении такой яйцеклетки сперматозоидом, зигота будет иметь большее число хромосом. Клетки, содержащие больше двух Х-хромосом, имеют большее число телец Барра, потому что активна всегда только одна Х-хромосома.

Например, XXX (трисомия по X—хромосоме) по фенотипу девочка. У нее в ядрах соматических клеток выявляются два тельца Барра (симптомы в вопросе 27).

XXY — синдром Клайнфельтера — по фенотипу мальчик. У него выявляется тельце Барра (симптомы в вопросе 27).

ХО — моносомия по Х-хромосоме — синдром Шерешевского-Тернера. Это девочка, тельце Барра отсутствует (симптомы в вопросе 27).

YO — не жизнеспособен.

Признаки, гены которых находятся в половых хромосомах, наследуются сцепленно с полом. Наследование признаков, гены которых находятся в Х и Y—хромосомах, называют наследованием, сцепленным с полом. Распределение генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при оплодотворении.

В Y—хромосоме есть гены, определяющие развитие мужского пола, необходимые для дифференцировки семенников. В X-хромосоме таких генов нет, но есть много других генов. Y—хромосома очень мала и не содержит многих генов, которые есть в Х-хромосоме.

У гетерогаметного пола (мужского) большинство генов, локализованных в Х-хромосоме, находится в гемизиготном состоянии, т.е. не имеют аллельной пары. В мужских организмах любой рецессивный ген, локализованный в одном из негомологичных участков X—хромосомы, проявляется в фенотипе.

Y—хромосома содержит некоторое количество генов, гомологичных генам X—хромосомы, например, гены геморрагического диатеза, общей цветной слепоты и др.

У человека известны рецессивные сцепленные с полом признаки, такие как гемофилия, дальтонизм, мышечная дистрофия и др.

У женщин две ХХ-хромосомы. Рецессивный признак проявляется в том случае, если гены, отвечающие за него, находятся в двух Х-хромосомах. Если организм гетерозиготен по этим генам, то признак не проявится. В мужском организме одна X—хромосома. Если в ней ген Н или h, то эти гены обязательно проявят свое действие, потому что Y-хромосома не несет данных генов.

Женщина может быть гомозиготна или гетерозиготна по генам, локализованным в Х-хромосоме, но рецессивные гены проявляются только в гомозиготном состоянии.

Если гены находятся в Y—хромосоме (голандрическое наследование), то признаки, ими обусловленные, передаются от отца к сыну. Например, так наследуется волосатость ушей. Y-хромосома у человека контролирует дифференцировку семенников. У мужчин одна Х-хромосома. Все гены, находящиеся в ней, в том числе и рецессивные, проявляются в фенотипе. В этом заключается одна из причин повышенной смертности мужских особей по сравнению с женскими.

Признаки, проявление которых различно у представителей разных полов, или эти признаки проявляющиеся у одного пола, называются ограниченными полом.

Эти признаки могут определяться генами, расположенными как в аутосомах, так и половых хромосомах, но возможность их развития зависит от пола организма. Например, тембры голоса баритон и бас характерны только для мужчин.

Проявление признаков, ограниченных полом, связано с реализацией генотипа в условиях среды целостного организма. Гены, ответственные за развитие вторичных половых признаков, в норме работают только у одного из полов, у другого они присутствуют, но «молчат». Функциональную активность целого ряда генов определяет гормональная деятельность организма. Например, у быков есть гены, контролирующие продукцию молока и его качественные особенности (жирность, содержание белка и др.), но у быков они «молчат», а функционируют только у коров. Потенциальная способность быка давать высокомолочное потомство делает его ценным производителем молочного стада.

Гены, степень проявления которых определяется уровнем половых гормонов, называются генами, зависимыми от пола. Эти гены могут находиться не только в половых хромосомах, но и в любых аутосомах.

Например, ген, определяющий облысение, типичное для мужчин, локализован в аутосоме, и его проявление зависит от мужских половых гормонов. У мужчин этот ген действует как доминантный, а у женщин как рецессивный. Если у женщин этот ген в гетерозиготном состоянии, то признак не проявляется. Даже в гомозиготном состоянии у женщин этот признак слабее выражен, чем у мужчин.

Генетика пола. Наследование, сцепленное с полом.

Цель: сформировать у учащихся представление о генетике пола, наследовании признаков, сцепленных с полом.

Задачи:

1. Образовательные: сформировать понятия: аутосомы, гетерохромосомы, гомогаметный, гетерогаметный пол, сформировать представление о детерминации развития пола, признаках, сцепленных с полом, признаках наследуемых через Y-хромосому и Х-хромосому; познакомить учащихся с особенностями наследования половых хромосом, некоторыми патологическими состояниями человека, наследуемыми сцепленно с полом.

2. Развивающие: продолжить формирование умений и навыков решения генетических задач на сцепленное наследование генов, на наследование, сцепленное с полом, развивать мыслительные операции.

3. Воспитательные: формировать сознательное отношение к своему здоровью и здоровью потомков.

Оборудование: компьютер, мультимедиапроектор, экран (интерактивная доска), презентация в Power Point.

Тип урока:урок изучения новой темы.

Генетика пола

Генетика объяснила сущность удивительной и важной проблемы: равное распределение женских и мужских особей в поколениях животных и людей

· Для какого способа размножения характерно образование гамет? Половое

· Какой набор хромосом они имеют? n

· Как называется оплодотворенная яйцеклетка, и какой набор хромосом она имеет? Зигота, 2n

Для начала вспомним, что представляет собой хромосомный набор клеток человека.

В кариотипе человека состоит из скольких хромосом? из 46 хромосом

44 одинаковы у всех особей, независимо от пола (эти хромосомы называют аутосомами), а одной парой хромосом, называемых половыми, женщины отличаются от мужчин. Это общебиологическая закономерность для всех живых организмов, размножающихся половым путем.

Аутосомы – парные хромосомы, одинаковые и для мужских и женских организмов.

Половые хромосомы – хромосомы, набор которых отличает мужские и женские особи у животных и растений с хромосомным определением пола.

Диплоидная клетка организма человека: 46 хромосом =23 пары гомологичных хромосом, из которых 22 пары — аутосомы + 1 пара половые хромосомы:

· Как обозначаются половые хромосомы? у мужчины — ХY; у женщины — ХХ.

Пол можно рассматривать как один из признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер — хромосомный.

Хромосомный механизм определения пола

Пол будущего потомка определяется сочетанием половых хромосом. Пол, имеющий одинаковые половые хромосомы, называют гомогаметным, так как он дает один тип гамет, а имеющий разные-гетерогаметным, так как он образует два типа гамет. У человека, млекопитающих, мухи дрозофилы гомогаметный пол женский, а гетерогаметный — мужской. Гетерогаметный женский у птиц, рептилий

· У мужского пола в процессе гаметогенеза формируется 2 типа гамет в равной пропорции, так как мужской пол — гетерогаметный: Х-сперматозоиды и Y-сперматозоиды.

· Поскольку у женского пола половые хромосомы одинаковы, так как женский пол — гомогаметный, то каждая яйцеклетка несет Х-хромосому.

Теоретически соотношение полов должно быть 1:1. Эта статистическая закономерность, обеспечиваемая условием равновероятной встречи гамет. Статистически так и получается.

· Как думаете, какой гомогаметный или гетерогаметный пол будет определять пол?

Пол будущего организма всегда определяет гетерогаметный пол(т.е. мужской), именно потому, что гаметы с Х- и Y- хромосомой образуются у мужского пола в равных количествах.

X- и Y-хромосомы отличаются по строению: Y-хромосома состоит как бы из двух участков — одного гомологичного Х-хромосоме, а другого негомологичного. А так же по набору генов, которые в них находятся.

Генетика пола. Механизмы определения пола. Наследование признаков, сцепленных с полом.

Пол — это совокупность признаков и свойств организма , определяющих его участие в размножении

Первичные половые признаки — морфофизиологические особенности организма , обеспечивающие образование гамет , их сближение и соединение при оплодотворении — наружные и внутренние органы размножения ( половые железы и выводящие протоки , добавочные железы , органы внутриутробного развития , наружные половые органы и т. д.)

Вторичные половые признаки — совокупность внешних признаков и особенностей , обеспечивающих обнаружение и привлечение партнёра ( их развитие контролируется гормонами , синтезируемыми первичными половыми органами — половыми железами )

· Подавляющее большинство животных предствлено особями двух полов — мужского и женского

· Соотношение полов в популяциях раздельнополых организмов в среднем 1 : 1 ( у людей в среднем на каждые 100 девочек рождается 106 мальчиков ) ; такое соотношение полов обеспечивает максимальную вероятность встречи самцов и самок и поддержание оптимальной численности популяций ; в дальнейшем эти соотношения могут сильно изменяться в силу неодинаковой выживаемости особей разного пола ( у человека к 50 годам соотношение мужчин и женщин составляет 85 : 100 , а к 85 годам — 50 : 100 )

· Развитие признаков пола генетически контролируется , т. к. закономерно воспроизводтся в ряду поколений и наследуется как менделирующий признак

· Самцы и самки различаются по набору хромосом

Аутосомы — хромосомы одинаковые в клетках мужских и женских особей ( образуют гомологичные пары )

Половые хромосомы (гетеросомы) — пара хромосом , отличающиеся у разных полов по морфологии и заключённой в них генетической информации

· Большую из половых хромосом принято называть X(икс) — хромосомой , меньшую Y (игрек) -хромосомой ( у некоторых животных Y- хромосома может отсутствовать )

· Зигота человека и других организмов потенциально бисексуальна . Главным фактором , сдвигающим фенотип в мужскую сторону , является Y-хромосома . Выбор направления происходит на 6 -10 неделе эмбриогенеза

· В Y- хромосоме человека находится ген дифференцировки семенников , которые вырабатывают гормоны , обеспечивающие развитие мужских вторичных половых признаков( при отсутсвии Y-хромосомы зачаточные репродуктивные органы дифференцируются в яичники и у зародыша развиваются женские половые признаки )

· Пол будущего организма определяется сочетанием половых хромосом в зиготе в момент оплодотворения

· В зависимости от сочетания половых хромосом в зиготе различают 5 типов определения пола :

1. XX , XY- у всех млекопитающих ( в том числе у человека ) , дрозофилы

2. XY , XX — у части насекомых ( бабочек , ручейников ) , птиц , рептилий , некоторых амфибий и рыб

3. XX , X0 ( нет Y- хромосомы ) – нек.насекомые : клопы, прямокрылые ( кузнечики)

4. X0 , XX — у тли

5. гаплоидно — диплоидный ( 2n , n ) встречается , например , у пчёл : самцы развиваются из неоплодотворённых гаплоидных яиц , самки — из оплодотворённых диплоидных ( эти организмы не имеют половых хромосом )

· Пол особи может определяться : до оплодотворения яйцеклетки сперматозоидом ( прогамное определение пола ); в момент оплодотворения ( сингамное определение пола →чаще всего ) ; после оплодотворения ( эпигамное определение пола ) — у морского кольчатого червя бонеллия , если личинка садится на дно , из неё развивается самка , а если прикрепляется к хоботку взрослой самки , то самец

· У дрозофилы Y — хромосома по размеру близка к к X- хромосоме , однако она генетически инертна , т. к. состоит в основном из гетерохроматина и играет незначительную роль в определении пола (особи с кариотипом X0 внешне типичные самцы , но стерильные , а особи с кариотипом XXY — плодовитые самки )

· У многих организмов пол определяется не столько сочетанием в зиготе X- иY-хромосом , сколько соотношением числа X-хромосом и наборов аутосом — половой индекс ( у нормальных самок половой индекс равен 1 ( 2X : 2 А ) , у нормальных самцов — 0,5 ( XY: 2А ) ; при половом индексе более 1 ( 3X : 2А развиваются сверхсамки , при величине ниже 0,5 — самцы , при значении более 0,5 , но менее 1 ( 2X : 3А развиваются интерсексы

Интерсексы — особи , занимающие по половым признакам промежуточное положение между самцами и самками ( не путать с гермафродитами )

· При утрате X- хромосомы одной из клеток на стадии первого деления зиготы развивается организм , половина клеток которого имеет нормальный кариотип (2АXX ) , несёт признаки самки, а другая половина, клетки которой лишены одной X- хромосомы ( 2АXО ) , имеет признаки самца — явление гинандроморфизма

Гинандроморфы — организм , одна часть которы , включая половые желез , женског, а другая — мужского типа

Аутосомное наследование- это наследование признаков , гены которых локализованы в аутосомах

Сцеплённое с полом наследование- это наследование признаков , гены которых локализованы в половых хромосомах ( открыто Т. Х.Морганом )

признаки , сцеплённые с полом , наследуются не в соответствии с законами Менделя

у человека признаки , наследуемые через Y- хромосому , могутбыть только у лиц мужского пола , а наследуемые через X- хромосому — у лиц обоих полов

признаки , наследуемые через Y-хромосому , называются голандрические ( голандрическое наследование )

Y- сцеплённое ( голандрическое наследование )- наследование признаков , гены которых локализованы только в Y- хромосоме и передающихся от отца ко всем его сыновьям ( фенотипически проявляются в каждом поколении )

— у человека таких генов совсем немного : гипертрихоз ( развитие волос по краю ушной раковины , перепонки между пальцами , ген дифференцировки семенников

по генам , локализованным в X- хромосоме женщины могут быть как гомо-,так и гетерозиготными а рецессивные аллели генов проявляются у них только в гомозиготном сотоянии -XаXа ; у мужчин все гены X-хромосомы , даже рецессивные , сразу же проявляются в фенотипе ( такой организм называют гемизиготным

Гемизиготные признаки- признаки , гены которых локализованы только в одной ( X или Y ) половой хромосоме и не имеющие аллельных генов в другой половой хромосоме (по генов X-хромосомы мужской организм гемизиготен)

X — сцеплённое наследование — У человека выявлена локализация в X-хромосоме 95 признаков ; подавляющее их число гемизиготны ( т. е. не имеют гомологичных аллелей в Y-хромосоме ) — это дальтонизм , гемофилия , атрофия зрительного нерва , несахарный диабет → для женщин (а) для мужчин (А) ( в силу их гемизиготности ) ; м\б промежуточный характер проявления признака у гетерозигот → окраска шерсти у кошек.

Гены общих гомологичных участков ( локусов ) , имеющиеся и в X- и в Y-хромосоме образуют синапсис при коньюгации , возможен кроссинговер.

Гены гомологичных участков наследуются одинаково у мужчин и женщин.

признаки гомологичных участков называются неполно ( частично ) сцеплённымис полом.

Признаки , ограниченные полом — признаки , гены которых локализованы в аутосомах , но проявляющиеся в зависимости от пола ( у одного пола признак проявится , у другого — нет )

· Проявление этих признаков зависит от соотношения половых гормонов

· Примерами таких признаков является наличие рогов у оленей ( самцы рогаты , а самки безроги ) или яйценоскость птиц , облысение у человека

Генетические механизмы определения пола

Генетика пола человека.

Пол — совокупность признаков, по которым производится специфическое

разделение особей или клеток, основанное на морфологических и физиологических

особенностях, позволяющее осуществлять в процессе полового размножения

комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится

специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток,

называется первичными половыми признаками. Это гонады (яичники или

семенники), их выводные протоки, добавочные железы полового аппарата,

копулятивные органы. Все другие признаки, по которым один пол отличается от другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строениескелета, тип развития подкожной жировой клетчатки, строение трубчатых костей

и др.

2.1. Генетические механизмы формирования пола.

Начало изучению генотипического определения пола было положено открытием

американскими цитологами у насекомых различия в форме, а иногда и в числехромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и

классическими опытами немецкого генетика Корренса по скрещиванию однодомногои двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucusсамки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, ав седьмой паре одна хромосома такая же, как соответствующая хромосома самки,а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, илигетерохромосомы, или половые хромосомы. У самки две одинаковые половыехромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая -Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы аутосомами. Таким образом, хромосомная формула у самки названного клопа запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и существует в принципе тот же аппарат для определения пола, однако гетерозиготны в отношении реализаторов пола не мужские, а женские организмы.

Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи

женского пола — ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек,птиц, ZZ-ZO — ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный,широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки — это диплоидные особи, а самцы (трутни) — гаплоидные. Самки развиваются из оплодотворенныз яиц, а из неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. Каждая яйцеклетка содержит одну Х-хромосому, а другая половина — одну Y-хромосому.

Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с

генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина — Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки.

Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид.

Другая, если она имеется, бывает в покоящемся состоянии в виде плотного

темно-окрашенного тельца, называемого тельцем Барра (факультативный

гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-

хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) — одно. У

человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа

XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A – бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе,

так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-

хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Рис.1. Вид половых хромосом человека в метафазе митоза.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый

H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому.

Единственной функцией его считается дифференцировка гонад. Вторичные половые

признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами.

Развитие мужских вторичных половых признаков контролирует тестостерон,

воздействующий на все клетки организма, включая клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в

действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный

и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины — только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью

инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше.

Х-хромосома инактивируется на ранней стадии эмбрионального развития,

соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х- хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи,

гетерозиготные по генам половых хромосом, представляют собой мозаики (пример,

черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак,

наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства

полов.

2.2. Наследование признаков, сцепленных с полом.

Морган и его сотрудники заметили, что наследо­вание окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красно­глазые самцы и самки

. При скрещива­нии этих мух F1, между собой были получены

красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной

белоглазой самки. Тот факт, что у самцов частота про­явления рецессивного

признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х — хромосоме, а Y — хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морга скрестил исходного белоглазого самца с красноглазой сам­кой из F1. В потомстве были по­лучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х — хромосома несет ген окраски глаз. В Y – хромосоме соответствующего локуса вообще нет. Это явле­ние известно под названием

Наследования, сцеплен­ного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме

наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе

гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома

закономерно переходит от одного пола к другому, при этом дочь наследует

Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери — признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового

зрения, так называемая цветовая слепота. В основе появления этих дефектов

зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. Было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная

картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери,

страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой)

Р Ха Ха х Ха y

Ха Ха,y

F1 Ха Ха, Хаy

В том же случае, когда наоборот, отец является дальтоником, а мать имеет

нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще

встречается у мужчин. Э.Вильсон объяснил наследование этого признака,

предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Ха Ха) с мужчиной дальтоником (Х аy) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

Другим примером наследования сцепленного с полом, может послужить

рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе — тгемофилию. Это заболевание появляется почти исключительно только у мальчиков.

При гемофилии нарушается образование фактора VIII, ускоряющего свертывание крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-хромосомы, недоминантным нормальным и рецессивным мутантным. Возможныследующие генотипы и фенотипы:

Генотипы Фенотипы
Хн Хн Нормальная женщина
Хн Хn Нормальная женщина (носитель)
Хнy Нормальный мужчина
Хny Мужчина гемофилик

В гомозиготном состоянии у женщин ген гемофилии летален.

Особей женского пола, гетерозиготных по любому из сцепленных с полом

признаков, называют носителями соответствующего рецессивного гена. Они

фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотряна наличие у отца нормального гена, сыновья матерей-носителей с вероятностью 50% будут страдать гемофилией.

Один из наиболее хорошо документированных примеров наследования гемофилии мы находим в родословной потомков английской королевы Виктории. Предполагают, что ген гемофилии возник в результате мутации у самой королевы Виктории или у одного из ее родителей. Среди унаследовавших это врожденное заболевание —

цесаревич Алексей, сын последнего русского царя Николая II. Мать цесаревича,

царица Александра Федоровна (Алиса, рис.2), получила от своей бабушки

королевы Виктории ген гемофилии и передала его в четвертом поколении бывшему наследнику царского престола. На рис.2 показано, как этот ген передавался ее потомкам.

дин из сцепленных с полом рецессивных генов вызывает особый тип мышечной дистрофии (тип Дюмена). Эта дистрофия проявляется в раннем детстве и постепенно ведет к инвалидности и смерти ранее 20-летнего возраста. Потому мужчины с дистрофией Дюмена не имеют потомства, а женщины гетерозиготные по гену этого заболевания, вполне нормальны.

Среди доминантных признаков, связанных с Х-хромосомой, можно указать на ген, который вызывает недостаточность органического фосфора в крови. В результате, при наличии этого гена, часто развивается рахит, устойчивый к лечению обычными дозами витамина А. В этом случае картина сцепленного с полом наследования заметно отличается от того хода передачи по поколениям, который

был описан для рецессивных болезней. В браках девяти больных женщин со

здоровыми мужчинами среди детей была половина больных девочек и половина

мальчиков. Здесь, в соответствии с характером наследование доминантного гена, в Х-хромосомах произошло расщепление в отношении 1:1:1:1.

Другим примером доминантного гена, локализованного в Х-хромосоме человека, может послужить ген, вызывающий дефект зубов, приводящий к потемнению эмали

зубов. Так как гетерогаметный пол гемизиготен по сцепленным с полом генам, то эти гены всегда проявляются в их фенотипе, даже если они рецессивны.Большинство

генов, имеющихся в Х-хромосоме, в Y-хромосоме отсутствует, однако

определенную генетическую информацию она все-таки несет. Различают два типатакой информации: во-первых, содержащуюся в генах, присутствующих только в Y-хромосоме, и, во-вторых, в генах, присутствующих как в Y-, так ив Х-хромосоме (гемфрагический диатез).

Y-хромосома передается от отца всем его сыновьям, и только им. Следовательно,для генов, содержащихся только в Y-хромосоме, характерно голандрическое наследование, т.е они передаются от отца к сыну и проявляются у мужского пола.

У человека в Y-хромосоме содержатся по крайней мере три гена, один из

которых необходим для дифференциации семенников, второй требуется для

проявления антигена гистосовместимости, а третий оказывает влияние на размер зубов. Y-хромосома имеет немного признаков, среди которых есть

патологические. Патологические признаки наследуются по параллельной схеме наследования (100%-ое проявление по мужской линии). К ним относят:

1) облысение;

2) гипертрихоз (оволосенение козелка ушной раковины в зрелом возрасте);

3) наличие перепонок на нижних конечностях;

4) ихтиоз (чешуйчатость и пятнистое утолщение кожи).

2.3. Наследование признаков, контролируемых полом.

Имеется ряд признак, контролируемых генами, расположенными в аутосомах, однако для проявления этих признаков необходима определенная среда, создаваемая генами, находящимися в половых хромосомах (например, гены, определяющие мужские признаки, находятся в аутосомах, и их фенотипические эффекты маскируются наличием пары Х-хромосом, в присутствии одной Х-хромосомы мужские признаки проявляются. Такие признаки называются обусловленными или

контролируемыми полом. Появление лысины — аутосомно-доминантный признак, но проявляется практически только у мужчин при наследовании, контролируемом полом, у женщин подавляются гены, детерминирующие рост бороды.

3. Сцепленное наследование признаков.

Наряду с признаками, наследуемыми независимо, обнаружены признаки,

наследуемые совместно (сцепленно). Экспериментальное наследование этого

явления, проведенное Т.Г. Морганом и его группой (1910-1916), подтвердило

хромосомную локализацию генов и легло в основу хромосомной теории

наследственности.

3.1. Хромосомная теория наследственности.

В работах на плодовой мушке Drosophila melanogaster было установлено, что гены по признаку совместной их передачи потомкам подразделяются на 4 группы. Число таких групп сцепления равно количеству хромосом в гаплоидном наборе. Можно заключить, что развитие признаков, которые наследуются сцепленно,

контролируется генами одной хромосомы. Этот вывод обосновывается также данными следующих наблюдений. Скрещивание серой мухи (В) с нормальными крыльями (V) и черной мухи (в) с зачаточными крыльями (v) дает в 1-ом поколении серых гибридов

с нормальными крыльями

. При скрещивании самца-гибрида 1-го поколения с черной самкой с зачаточными

крыльями рождаются

особи 2 видов, аналогичных исходным родительским формам, причем в равном

количестве.

Полученные в проведенных скрещиваниях данные нельзя объяснить независимым

наследованием признаков. Рассматриваемые совместно результаты обоих

скрещиваний убеждают в том, что развитие альтернативных признаков

контролируется различными генами, и сцепленное наследование этих признаков

объясняется локализацией генов в одной хромосоме.

Основные положения хромосомной теории наследственности, сформулированной Т.Г.

Морганом, заключаются в следующем.

1. Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое

число генов каждой из негомологичных хромосом уникален.

2. Аллельные гены занимают определенные и идентичные локусы гомологичных

хромосом.

3. В хромосоме гены располагаются в определенной последовательности по ее

длине в линейном порядке.

4. Гены одной хромосомы образуют группу сцепления, благодаря чему имеет место

сцепленное наследование некоторых признаков; сила сцепления находится в

обратной зависимости от расстояния между генами.

5. каждый биологический вид характеризуется специфичным набором хромосом

кариотипом.

3.2. Механизм сцепления.

Гены, локализованные в одной хромосоме, называют группой сцепления. Число групп сцепления соответствует гаплоидному набору хромосом.

Если две сцепленные пары генов находятся в одной гомологичной паре хромосом, то

генотип запишется .

Проведем скрещивание двух

организмов различающихся по двум парам признаков, например

Р х Скрещивая гибриды 1-го поколения, получим х

1 :2 :1 .

Гены, находящиеся в одной паре гомологичных хромосом, наследуются вместе и не расходятся в потомстве, так как при гаметогенезе они обязательно попадают в одну гамету. Совместное наследование генов, ограничивающее свободное их

комбинирование называют сцеплением генов. Для наследования сцепленных генов, находящихся в половых хромосомах, имеет значение направление скрещивания.

Нужно иметь ввиду, что кроме истинного сцепления, могут встречаться явления, внешне сходные со сцеплением, нот отличные от него по природе: это так называемое ложное, межхромосомное сцепление, возникающее из-за нарушения свободного комбинирования негомологичных хромосом в мейозе. Такие случаи наблюдались в скрещиваниях линий лабораторных мышей и дрожжей. Предполагается, что такое сцепление между генами разных хромосом обязано тенденции последних к неслучайному расхождению в мейозе. Сцепленное наследование генов негомологичных хромосом обнаруживается также при межвидовых скрещиваниях в тех случаях, когда родительская комбинация хромосом

оказывается физиологически совместимой. Ложное сцепление следует отличать от истинного сцепления генов, находящихся в одной хромосоме — в одной группе сцепления.

3.3. Кроссинговер.

Если гены находятся в одной хромосоме и всегда передаются вместе говорят о полном сцеплении. Чаще встречается неполное сцепление. Нарушения сцепления объясняется кроссинговером, который является обменом удентичных участков гомологичных хромосом, в которых расположены аллельные гены. Запись

означает, что в одной аутосоме находится доминантный ген 1-ой пары

альтернативных признаков и рецессивный ген 2-ой. А в другой аутосоме наоборот.

В половых хромосомах

y-хромосома не несет этих генов. Кроме сцепления генов, здесь идет сцепление с полом.

Кроссовер — гамета, которая претерпела процесс кроссинговера. Частота

вступления генов в кроссинговер прямо пропорциональна расстоянию между ними, поэтому число гамет с новыми комбинированными формами будет зависеть от расстояния между генами. Расстояние вычисляется в морганидах, но если речь идет о кроссинговере, то расстояние вычисляется в %

Одной морганиде соответствует 1% образования гамет, в которых гомологичные

хромосомы обмениваются своими участками. 50М — максимальное расстояние между генами, на котором возможен кроссинговер. Если гены расположены друг от друга на расстоянии, большем 50М, то наблюдается явление независимого наследования.

На основании частот кроссинговера строится карта группы сцепления.

Кроссинговер может происходить не только во время мейоза, но и митоза, тогда его называют митотическим кроссинговером. Частота митотического

кроссинговера значительно ниже мейотического. Тем не менее ег также можно использовать для генетического картирования.

Мейотический кроссинговер осуществляется после того, как гомологичные

хромосомы в зиготенной стадии профазы I соединяются в пары, образуя

биваленты. В профазе I каждая хромосома преджставлена двумя сестринскими хроматидами, и перекрест происходит между хроматидами.

Приняв положения, что 1) генов в хромосоме может быть много, 2) гены

расположены в хромосоме в линейном порядке, 3) каждая аллельная пара занимает

определенные и идентичные локусы в гомологичных хромосомах, Т. Морган

допустил, что перекрест между хроматидами гомологичных хромосом может

происходить одновременно в нескольких точках кроссинговер, происходящий лишь

в одном месте, называют одиночным кроссинговером, в двух точках одновременно

— двойным, в трех — тройным и т.д., т.е. кроссинговер может быть

множественным.

Пусть, например, в гомологичной паре хромосом содержатся три пары аллелей в

гетерозиготном состоянии

Тогда перекрест, произошедший только в участке между генами А и В или между В

и С, будет одинарным. В результате одинарного перекреста возникают в каждом

случае только две кроссоверные хромосомы

aBC и Abc или Abc и aBC.

Каждый двойной кроссинговер возникает благодаря двум независимым одинарным

разрывам в двух точках. Таким образом, двойные кроссинговеры сокращают

регистрируемое расстояние между генами.

Вместе с тем между обменами на соседних участках хромосом существует

взаимовлияние, названное интерференцией. Такое взаимовлияние можно

выразить количественно. Для этого составляют реально наблюдаемую частоту

двойных кроссинговеров с частотой, теоретически ожидаемой на основе

предположения о том, что обмены на соседних участках происходят независимо

друг от друга. Степень и характер интерференции измеряется величиной

коинциденции (С). Коинциденцию оценивают как частное от деления реально

наблюдаемой частоты двойных кроссоверов на теоретически ожидаемую частоту двойных кроссоверов. Последнюю величину получают, перемножая частоты кроссинговера на соседних участках.

Величину интерференции (I) определяют по формуле I=1-C. Если С

интерференция положительная, т.е. одинаковый обмен препятствует обмену на соседнем участке хромосомы. Если С>1, то интерференция отрицательная, т.е. один обмен как бы стимулирует дополнительные обмены на соседних участках. В действительности существует только положительная интерференция при реципрокной

рекомбинации — кроссинговере, а кажущееся неслучайным совпадение двух и болееобменов, характерное для очень коротких расстояний — результат нереципрокных событий при рекомбинации.

Таким образом, при карплеровании генов в группах сцепления на основе изучения

частот рекомбинации необходимо учитывать две противоположные тенденции.

Двойные обмены “сокращают” расстояния между генами, и интерференция

препятствует множественным обменам, вероятность которых увеличивается срасстоянием.

В обобщенном виде зависимость частоты рекомбинации от реального расстояния с учетом множественных обменов описывает функция Дж. Холдэйна.где rf — картирующая функция (в нашем случае — это частота учитываемых

кроссинговеров), d — реальное расстояние, на котором происходят обмены, e —

основание натурального логарифма.

При изучении множественных обменов и интерференции между ними используют тетрадный анализ. Для этого рассматривают тригибридное скрещивание (ABC x

abc) по сцепленным генам. Учитывая, что кроссинговер происходит на стадии 4-х хроматид, возможны три типа двойных обменов. Это двойные двухроматидные обмены, двойные треххроматидные обмены и двойные четыреххроматидные обмены только между несестринскими хроматидами, последствия которых генетически различимы (рис. 4).

3.4. Группы сцепления и карты хромосом у человека.

9 1. Lu Se

R El N I

Рис. 7. Генетические карты аутосом человека.

У человека 23 пары хромосом. Это указывает на наличие у него 23 групп сцеплений, для каждой из которых надо построить линейные карты взаиморасположения генов.

Хорошо установлены группы сцепления, касающиеся трех пар аутосом. Одна группа сцепления несет в себе локус 1, где локализованы аллели групп АВО и локус, содержащий дефекты локтей и коленной чашечки (N). Расстояние между этими генами равно 10% кроссинговера. Вторая группа сцепления в аутосоме содержит локус Rh, где локализованы аллели резус-фактора, и локус эллиптоцитоза (El) доминантной мутации, вызывающей овальную форму эритроцитов. Расстояние между этими локусами

равно 3%. Третья аутосома имеет в себе локусы группы крови Лютеран (Lu) и локус секреции (Se). Группы крове Лютеран содержат систему из двух аллелей Lua и Lub. Аллели — секреторы (se) обуславливают выделение в разных тканях организма, и, в частности в слюне, растворимых в воде антигенов АВО.

Люди с рецессивными аллелями этого локуса (H) не выделяют водорастворимых

антигенов. Действие аллеля касается групп крови с антигеном АВО и антигено групп крови Лютеран. Расстояние между локусами Lu и Se равно 9%. Четвертая генетическая карта касается Х-хромосомы (рис. 8).

25 10 n m c h

Рис. 8. Генетические карты Х-хромосо-мы человека.

Начальный период в составлении карт хромосом человека очень знаменателен.

Будущая медицина и антропология будут связаны с использованием этих данных.

Для борьбы с врожденными болезнями и многими отрицательными биологическими

сторонами человека раскрытие генетического строения его 23 пар групп

сцепления с их точными линейными картами генов и знание тонкого строения отдельных генов сыграют величайшее значение.

studopedia.ru>

Механизм определения пола у человека это:

Механизм определения пола у человека

Механизм определения пола у человека

Определение пола у человека происходит по XY-механизму (см. также Определение пола). При этом гетерогаметным полом является мужской, гомогаметным — женский. Определение пола делится на три этапа: хромосомный, гонадный и фенотипический.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *