Механизмы эмиграции лейкоцитов

Содержание

Экссудация и экссудаты. Эмиграция лейкоцитов и их роль в воспалении. Хроническое воспаление

на тему:

Экссудация и экссудаты. Эмиграция лейкоцитов и их роль в воспалении. Хроническое воспаление

Экссудация и экссудаты. Эмиграция лейкоцитов и их роль в воспалении

Расстройство микроциркуляции всегда сопровождается двумя явлениями:

— экссудацией;

— эмиграцией.

Экссудация – это выпотевание жидкой части крови в воспалённую ткань

Экссудат – вышедшая в ткань жидкость

Механизмы экссудации:

1. Повышение проницаемости сосудов.

2. Увеличение гидростатичности давления в сосудах очага воспаления.

3. Увеличение коллоидно-осмотического давления в очаге воспаления в результате гиперосмии и гиперонкии.

Отличия в механизме образования экссудатов и транссудатов.

Транссудат – это выпотная жидкость, которая образуется при заболеваниях центрального кровообразования.

При транссудации ведущими факторами являются повышение гидростатического давления в венозной части русла

При экссудации ведущими факторами являются:

— повышение проницаемости сосудов;

— увеличение гидростатического давления в сосудах органа;

— увеличение коллоидно-осмотического давления в тканях;

— нарушения лимфооттока.

Экссудаты:

— серозный;

— фибринозный;

— гнойный;

— гнилостный;

— гемморрагический;

— смешанный.

1. Серозный экссудат – прозрачен. Удельный вес 1015 – 1020 (не высок). Белок 3 – 5% (мало), ПЯН и СЯН – мало. Встречается при воспалении серозных оболочек, а именно серозном перикардите, перитоните, плеврите, артрите.

Если серозный экссудат содержит слизь, то такое воспаление называют катаральным.

2. Фибринозный экссудат – содержит фибриноген. Фибриноген появляется в экссудате в результате увеличения проницаемости сосудистой стенки. Фибриноген может превращаться в фибрин и выпадать в осадок. Этот осадок может быть в виде:

а) ворсинчатых масс – на серозных оболочках;

б) фибринозной плёнки – на слизистых оболочках.

Фибринозное воспаление может быть крупозное и дифтеритическое.

Крупозное фибринозное воспаление – фибринозная плёнка рыхлая, поверхностная, легко отделяется от поверхности. Может быть при воспалении в желудке, трахее, бронхах.

Дифтеритическое фибринозное воспаление – фибринозная плёнка плотная, спаяна с подлежащей тканью, при удалении поверхность повреждается и кровоточит. Может быть при воспалении миндалин, полости рта, пищевода.

Крупозное или дифтеритическое воспаление? На характер фибринозной плёнки влияет характер эпителия слизистой и глубина поражения.

Фибринозные плёнки могут: а) самопроизвольно отторгаться и рассасываться; б) прорастать соединительной тканью и образовывать соединительную ткань сращения- спайки.

Фибринозный экссудат наблюдается при дифтерии, дизентерии, туберкулёзе

3. Гнойный экссудат содержит погибшие лейкоциты, продукты распада тканей, белки, нуклеиновые кислоты, нити фибрина.

Свойства: вязкий, мутный, зеленовато-жёлтый.

Наблюдается при:

а) инфекциях, вызванных кокковой флорой и патогенными грибами.

б) действии химических флогогенов (применение скипидара)

Пример гнойного экссудата:

а) фурункул – воспаление околоволосяного мешочка кожи;

б) карбункул – слияние многих фурункулов в один воспалительный очаг;

в) флегмона – острое разлитое гнойное воспаление подкожной клетчатки.

Результат гнойного воспаления – гнойное расплавление тканей. Продукт гнойного расплавления тканей – гной.

Гной – густая сливкообразная жидкость, желто-зелёная, сладковатая. При центрифугировании делится на 2 части: а) осадок – состоящий из клеток;

б) жидкая часть – гнойная сыворотка.

Клетки осадка (гнойные тельца) это нейтрофилы, моноциты, лимфоциты. Все эти клетки повреждены: вакуолизация цитоплазмы, гликоген и жир в ней, кариорексис и кариолизис.

Гнойная сыворотка – по составу равна плазме крови.

4. Гнилостный экссудат – отличается от гнойного тем, что имеет место при соединении патогенных анаэробов. Имеет грязно-зелёный цвет и дурной запах.

5. Гемморрагический экссудат – содержит эритроциты. Цвет розовый или красный. Характерен для туберкулёза, чумы, сибирской язвы, чёрной оспы, токсического гриппа, аллергических воспалений. Все эти воспаления сопровождаются значительным увеличением проницаемости сосудов.

6. Смешанные экссудаты: — серозно-фибринозный;

— серозно-гнойный;

— серозно-геморрагический;

— гнойно-фибринозный .

Биологическое значение экссудации

1. Обеспечение поставки в ткани плазменных медиаторов воспаления для интенсификации следующих процессов: фагоцитоза и эмиграции лейкоцитов в очаг воспаления.

2. Удаление из крови в очаг продуктов обмена и токсинов (дренажная функция).

3. Усугубление венозного застоя, тромбирование вен и лимфотических сосудов с целью задержки в очаге микробов, токсинов, продуктов обмена веществ.

4. Локализация воспалительного процесса.

Негативные последствия экссудации

1. Поступление экссудата в полости тела с образованием абсцесса, эмпиемы, флегмоны, пиемии или развитием плеврита, перикардита, перитонита.

2. Образование спаек. Может привести к смещению органов и нарушению их функций.

Эмиграция лейкоцитов и их роль в воспалении (выход лейкоцитов в воспалённую ткань)

Эмиграция лейкоцитов начинается в стадии артериальной гиперемии и достигает максимумв в стадии венозной гиперемии.

Могут быть 3 периода эмиграции лейкоцитов:

— краевое стояние лейкоцитов у поверхности эндотелия капилляров;

— выход лейкоцитов через эндотелиальную стенку;

— движение лейкоцитов в воспалительной ткани.

1. Краевое стояние лейкоцитов у поверхности эндотелия капилляров – нейтрофилы располагаются вдоль стенки капилляра. В норме поверхность эндотелия изнутри покрыта плёнкой фибрина, но лейкоциты с этой плёнкой не соприкасаются, так как поверхность гладкая, неповреждённая.

При повреждении на поверхности эндотелия появляется нежелатинированный фибрин. Это клейкое вещество, его нити перекидываются через просвет капилляра от одной стенки к другой. Лейкоциты захватываются нитями фибрина и удерживаются у сосудистой стенки.

Способствующие факторы:

1. Уменьшение линейной скорости V;

2. Потеря или уменьшение отрицательного заряда мембраны у лейкоцитов при воспалении (причина: действие на лейкоциты Са++ и др. положительных ионов. Они адсорбируются на мембране лейкоцитами и уменьшают его отрицательный заряд)

3. Кальциевые мостики – это химическая связь ионов Cа++ , которые адсорбируются на мембране лейкоцитами и клетками эндотелия

2. Выход лейкоцитов через эндотелиальную стенку : Последовательность событий:

— лейкоциты выпускают псевдоподии;

— псевдоподии проникают в межэндотелиальные щели;

— лейкоциты «переливаются» через эндотелиальный слой;

— оказываются между эндотелиальным слоем и базовой мембраной;

— выделяет лизосом. протеиназы и катионные белки;

— изменяет коллоидное состояние базовой мембраны;

— увеличивает её проницаемость;

— увеличивает её проходимость для лейкоцитов.

Эмиграция – активный процесс. Требует ионов Са++ , Мg++ ,О2 .

3. Движение лейкоцитов в воспалённой ткани.

Лейкоциты от наружной стенки сосуда движутся к центру очага воспаления. Направление движения лейкоцитов в воспалённую ткань называется положительным хемотаксисом. В очаг воспаления лейкоциты привлекаются специальными веществами. Эти вещества называются хемотоксинами. Они бывают 2-х групп:

1. Цитотоксины – привлекают лейкоциты непосредственно.

2. Цитотоксигены – способствуют образованию цитотоксинов.

Цитотоксины:

— компоненты комплемента

— калликреин

— денатурированные белки

— бактериальные токсины

— казеин

— пептон идр.

Цитотоксиногены:

— трипсин

— плазмин

— коллагеназа

— комплекс Аg + АТ

— гликоген

— бактериальные токсины

— лизосомальные ферменты

— лимфокины

Торможение хемотаксиса :

— гидрокортизон

— простагландины Е1 и Е2

— ЦАМФ

— колхицин

Механизм хемотаксиса:

1. Сокращение актомиозиновых нитей псевдоподий лейкоцитов.

2. Участие ионов Са++ и Мg++ .

3. Увеличение поглощения О2 .

4. Лейкоциты идут вслед за токами жидкости экссудата.

Сначала в очаг воспаления выходят нейтрофилы, затем – моноциты. Это закон эмиграции лейкоцитов Мечникова.

Причина:

1. Нейтрофилы более чувствительны к влиянию хемотоксинов.

2. Иной механизм эмиграции у моноцитов: моноцит внедряется в тело эндотелиальной клетки в виде большой вакуоли, проходит через её тело и выходит наружу. А не через межклеточные щели.

Роль нейтрофилов в очаге воспаления:

1. Появляются в очаге воспаления через 10 мин. после начала реакции воспаления.

2. Количество нейтрофилов достигает максимума через 4 – 6 час. после начала воспалительной реакции.

3. Фагоцитоз бактерии, продуктов распада, чужеродных частиц.

4. Поставка ферментов, катионных белков, активных форм кислорода.

5. Разрушение нейтрофилов – их остатки есть стимул для поступления и активности моноцитов.

Роль моноцитов в очаге воспаления:

1. Появляются в очаге воспаления через 16 – 24 час. после начала реакции воспаления.

2. Количество моноцитов достигает максимума через 72 час после начала.

3. Постепенно трансформируются в макрофаги:

— увеличивается объём цитоплазмы и органелл;

— увеличивается количество митохондрий и лизосом;

— образуются фаголизосомы;

— образуется медиаторы воспаления

— в результате активируется фагоцитоз!

Эмиграция и активизация моноцитов зависит от предыдущего выхода нейтрофилов. В эксперименте моноциты не накапливается в очаге в условиях нейтропении.

Вся масса клеток, которая накапливается в очаге воспаления, образует воспалительный инфильтрат. Этот инфильтрат есть причина припухлости в очаге воспаления.

Пролиферация

Пролиферация – размножение клеток в очаге воспаления. Начинается параллельно со стадией альтерации и экскреции с периферии очага.

Последовательность событий:

1. Очищение очага и образование полости:

— фагоцитоз м/о, продуктов распада, чужеродных агентов;

— удаление остатков лейкоцитов и разрушение тканей (гноя) хирургически;

— прорыв (самопроизвольное вскрытие гнойника).

2. В очаге появляются фибробласты и фиброциты: они образуются при дифференцировке макрофагов, камбиальных, адвентициальных, эндотелиальных клеток, а также стволовых клеток соединительной ткани – полибластов.

3. фибробласты образуют новые межклеточные вещества (гликозаминогликаны, коллаген, эластин, ретикулин). Коллаген – главный компонент рубцовой ткани.

4. Образование рубцовой ткани.

Стимуляторы и ингибиторы пролиферации.

1. Макрофаги:

— образуют фактор роста фибробластов. Это белок, который увеличивает пролиферацию фибробластов и синтез коллагена;

— привлекают фибробласты в очаг воспаления;

— образуют фибронектин и ИЛ – 1;

— стимулируют трансформацию клеток в фибробласты.

2. Т – лимфоциты:

— активизируются протеиназами. Протеиназы образуются в очаге воспаления при распаде тканей;

— образуют медиаторы воспаления;

— регулируют функции фибробластов.

3. Тромбоцитарный фактор роста фибробластов

4. Соматотропин

5. Инсулин

6. Глюкагон

7. Кейлоны – термолабильный гликопротеин, мм40000ЕД. Роль: ингибирование клеточного деления. Источник: сегментоядерные нейтрофилы.

Регенерация

Регенерация .

1. Разрастание соединительной ткани.

2. Новообразование сосудов.

3. Заполнение дефекта ткани.

Хроническое воспаление

Мечников «Воспаление – защитная реакция по своей сути, но эта реакция, к сожалению, не достигла своего совершенства.»

Закономерности хронизации воспаления

1. Возбудители: туберкулёз, проказа, листериоз. Токсоплазмоз, сап и др.

2. В очаге воспаления с самого начала накапливаются не сегментоядерные нейтрофилы, а моноциты

3. Активирование макрофагов

— моноциты в очаге воспаления трансформируются в макрофаги

— макрофаги фагоцитируют м/о

— м/о внутри макрофага не погибает, а продолжает жить и размножаться внутри макрофага

Макрофаг, котрый содержит живые м/о, называется активированным макрофагом

4. Выделение хемотоксинов

Хемотоксины – это вещества, которые привлекают в очаг новые макрофаги. Источник хемотоксинов – активированные макрофаги.

Хемотоксины:

— лейкотриены С4 и Д4

— простагландины Е2

— продукты распада коллагена

Предшественники хемотоксинов: компоненты комплемента С2 , С4 , С5 , С6 .

5. Повышение проницаемости капилляров

При хроническом воспалении обязательно повышается проницаемость капилляров, что приводит к увеличенному притоку новых и новых моноцитов в очаг воспаления.

Механизм повышения проницаемости капиллярной стенки

1. активированные макрофаги образуют вещества

— лейкотриены С4 и Д4

— фактор агрегации тромбоцитов

— кислород

— коллагеназа и др.

2. Эти вещества:

— разуплотняют баз мембрану стенки капилляра

— сокращают клетки эндотелия и увеличивают межклеточные щели

В результате проницаемость капиллярной стенки увеличивается.

6. Заякоривание макрофагов. В очаге моноциты и макрофаги выделяют фибронектин, который прочно присоединяет их к соединительной ткани.

7. Кооперация между макрофагами и лимфоцитами

Скопление моноцитов. Макрофагов и лимфоцитов образует воспалительный инфильтрат (гранулема)

Возбудители поглощается макрофагами, но не уничтожаются, а остаются живыми внутри макрофага.

Такой фагоцитоз называется незавершенным.

Взаимодействие макрофагов и лимфоцитов направлено на завершение фагоцитоза и уничтожение возбудителя. Для того, чтобы завершить фагоцитоз, макрофаги и лимфоциты взаимно стимулируют друг друга.

Механизмы их кооперации:

— макрофаги выделяют ИЛ-1, следовательно повышается активность лейкоцитов

— лейкоциты выделяют лимфокины, следовательно повышается активность макрофагов.

Результат кооперации: включение других механизмов уничтожения м/о, кроме фагоцитоза.

1. иммунный ответ Тл

2. слияние макрофагов друг с другом в одну большую клетку (многоядерную). В такой многоядерной клетке:

-слияние фагосом и лизосом, следовательно образование фаголизосом. В фаголизосомах часто м/о погибает, т.е. фагоцитоз становится завершённым.

— увеличение микробицидного потенциала клетки: увеличивается образование О2 — и Н2 О2 .

Включение дополнительных механизмов уничтожения возбудителя зачастую завершает фагоцитоз и м/о погибает

Различия между острым и хроническим воспалением

острое воспаление хроническое воспаление
преобладает стадия альтерации S эксс-и преобладает стадия пролиферации
ведущая клетка – эффектор нейтрофил ведущая клетка – эффектор моноцит, точнее активный макрофаг
заканчивается быстро, в считанные дни может продолжаться в течение жизни с периодическими обострениями

Жизнь гранулемы

Причина волнообразности течения хронического воспаления и периодических обострений

1. Макрофаги в гранулемах имеют длительный жизненный цикл, который исчисляется неделями, месяцами и годами

2. Этот жизненный цикл следующий

а) сначала в гранулему поступают свежие моноциты и лимфоциты

б) накопление макрофагов, активно фагоцитирующих микробы (зрелая гранулема).

в) число активно функционирующих макрофагов уменьшается (застарелая гранулема)

г) периодически в очаг приходят новые порции нейтрофилов, моноцитов и лимфоцитов. Это приводит к обострению процесса.

Таким образом, хроническое воспаление течёт месяцами и годами, с периодическими обострениями. Такое течение называют взаимообразным.

Повреждения здоровых тканей при хроническом воспалении

Эффект ускользания

Микробицидный потенциал любого фагоцита — О2 — и Н2 О2 .

Эти соединения отвечают за уничтожение возбудителя в процессе фагоцитоза. В гранулеме образование О2 — и Н2 О2 увеличивается с целью повышения микробицидного потенциала и завершения фагоцитоза. Возможен эффект ускользания. Он проводит к повреждению здоровых тканей.

Суть: при гиперпродукции О2 — и Н2 О2 возможно их поступление в здоровые ткани за пределы гранулемы. Тогда О2 — и Н2 О2 повреждают здоровые ткани.

Защита: аварийная нейтрализация избытка биоокислителей: каталаза, глютатинпероксидаза, глютатинредуктаза.

Особенности течения воспаления при низкой и высокой реактивности организма

По интенсивности воспаление может быть:

Нормэргическое

Гиперэргическое

Гипоэргическое

В свою очередь интенсивность зависит от состояния реактивности организма

Реактивность организма определяется состоянием следующих систем:

Нервной

Эндокринной

Иммунной

Роль нервной системы в патогенезе воспаления

Принимают участие следующие отделы НС6

— высшие отделы ЦНС

— таламическая область

— ВНС

Механизмы влияния НС на течение воспаления

— рефлекторный

— трофический

— действие нейромедиаторов

Роль эндокринной системы в патогенезе воспаления

Различают гормоны: провоспалительные и противовоспалительные

Провоспалительные гормоны: соматотропин, минералкортикоиды, тиреотропный гормон, инсулин

Противовоспалительные гормоны: половые гормоны, кортикотропин, глюкокортикоиды

Роль иммунной системы в патогенезе воспаления

Интенсивность воспалительной реакции напрямую зависит от состояния иммунной реактивности:

1. в иммунном организме интенсивность воспалительной реакции снижена. Пример: если в организме имеются АТ против дифтерии, то на фоне введения дифтерийного токсина воспалительная реакция будет гипергической

2. при аллергии развивается гиперэргическая воспалительная реакция с преобладанием стадии альтерации вплоть до некроза, или стадии экскреции с выраженным отёком или инфильтрацией

3. иммунная система участвует в воспалительной реакции за счёт:

— уничтожения флогогена в воспалительном очаге через гуморальные и клеточные иммунные реакции

— стимуляция воспалительной реакции с помощью лимфокинов, которые выделяют лимфоциты

Соотношение местных проявлений воспаления и общего состояния организма

Воспаление – это общая реакция организма на местное повреждение тканей

Общие проявления воспаления

1. повышение температуры тела – действие ИЛ-1 и ПГ-Е2 на центр терморегуляции, ИЛ-1 и ПГ –Е2 образуются лейкоцитами в очаге воспаления

2. изменение обмена веществ

Причина: под влиянием медиаторов воспаления изменяется нейроэндокринная регуляция ОВ

— увеличение (сахара)кр

— увеличение (глобул.)кр

— увеличение (остаточного азота)кр

— превалирование глобулинов над альбуминами в крови

— увеличение СОЭ

— синтез белков острой фазы в печени

— активация иммунной системы

3. изменение клеточного состава крови и костного мозга

Происходит в определённой последовательности:

— уменьшение лейкоцитов в периферической крови за счёт развития феномена краевого стояния

— снижение содержания зрелых и незрелых гранулоцитов в костном мозге за счёт их выхода в кровь

— восстановление числа лейкоцитов в крови за счёт вышедших из костного мозга гранулоцитов

— стимуляция и увеличение лейкопоэза в костном мозге.

Виды воспаления

Альтеративное – преобладают явления альтерации, в тканях резко выражены явления дистрофии, вплоть до некроза и некробиоза

Наблюдается в паренхиматозных органах и тканях

Это: миокард, печень, почки, скелетная мускулатура.

Экссудативно-пролиферативное – преобладают нарушения микроциркуляции и экссудация над другими стадиями воспаления

Может быть серозное, фибриозное, гнойное, гнилостное, гемморрагическое, смешанное.

Пролиферативное – преобладает стадия пролиферации и разрастение соединительной ткани

Наблюдается: при специфическом воспалении

м/о: туберкулёз, лепра, сифилис, сап, склерома и др.

Биологическое значение воспаления

1. воспаление есть защитно-приспособительная реакция организма, выработанная в процессе эволюции

2. при воспалении создаётся барьер между здоровой и повреждённой тканью. Очаг воспаления вместе с флогогеном отрганичен от неповреждённой ткани

3. Воспаление не является физиологической защитной реакцией, так как в ходе воспаления возникают повреждения тканей. Это типовой патологический процесс.

Эмиграция лейкоцитов при воспалении, ее механизмы, факторы хемотаксиса.

Эмиграция лейкоцитов (лейкодиапедез) – выход лейкоцитов из просвета сосудов ч/з сосудистую стенку в окружающую ткань. Этот процесс совершается и в норме, но при В. приобретает гораздо большие масштабы. Смысл эмиграции состоит в том, чтобы в очаге В. скопилось достаточное число клеток, играющих роль в развитии В. (фагоцитоз и т.д.).

Эмиграция лейкоцитов в очаг В. начинается с их краевого (пристеночного) стояния, которое может продолжаться несколько десятков минут. Затем гранулоциты и агранулоциты проходят через сосудистую стенку и продвагиются к объекту фагоцитирования. Лейкоциты выходят за пределы сосуда на стыке между эндотелиальными клетками. Это объясняется округлением эндотелиоцитов и увеличением интервалов между ними. После выхода лейкоцитов контакты восстанавливаются. Направленное движение лейоцитов объясняется накоплением в очаге В. экзо- и эндогенных хемоаттрактантов – веществ индуцирующих хемотаксис, повышением температуры (термотаксис), а также развитием условий для гальвано- и гидромаксиса.

Функцию эндогенных хемоаттрактантов выполняют фракции системы комплемента, в особенности компонент С5а. Свойствами хемоаттрактантов обладают кинины и активированный фактор – Хагемана. Экзогенными хемоаттрактантами являются пептиды бактериального происхождения, в особенности те, которые содержат N-фармиловые группы.В эмиграции лейкоцитов в очаг В. наблюдается определенная очередность: сначала эмигрируют нейтрофильные гранулоциты, моноциты, лимфоциты. Более позднее проникновение моноцитов объясняется их меньшей хемотаксической чувствительностью. После завершения воспалительного процесса в очаге наблюдается постепенное исчезновение клеток крови, начиная с тех лейкоцитов, которые появились раньше (нейтрофильные гранулоциты). Позже элиминируются лимфоциты и моноциты.

В очаге В. осуществляется активное движение лейкоцитов к химическим раздражителям – хемоаттрактантам в соответствии с градиентами их концентрации. Ориентированное движение клеток и организмов под влияеми химических раздражителей – хемоаттрактантов получило название – хемотаксис. В хемотаксисе лейкоцитов большое значение имеет система комплемента и прежде всего компоненты С3 и С5. Лейкотаксически активные компоненты системы комплемента С3 и С5 образуются в очаге В. под влиянием различных ферментов: трипсина, тромбина, плазмы, уровень которых в условиях альтерации возрастает.

После взаимодействия хемоаттрактантов со своими рецепторами на поверхности нейтрофилов и активированных моноцитов, хаотическое движение фагоцитов прекращается. Фагоциты начинают ориентировано перемещаться по направлению к объекту эндоцитоза в соответствии с градиентами концентрации хемоаттрактантов, то есть становятся ориентированными. Процесс эмиграции может не только стимулироваться, но и подавляться. Рост содержания в очаге В. кортизола тормозит ориентированный хемотаксис нейтрофилов. Гиперкортизолемия, тормозящая миграцию ориентированных полиморфонуклеаров, направлена на предотвращение трансформации В. из защитной в патологическую реакцию.

Реакция сосудов микроциркуляторного русла при воспалении. Динамика изменения кровотока, стадии и механизмы.

Динамика сосудистых реакций и изменения кровообращения при развитии В. стереотипа: вначале возникает кратковременный рефлекторный спазм ортериол и прекапилляров с замедлением кровотока, затем, сменяя друг друга, развивается артериальная и венозная гиперемия, престаз и стаз – остановка кровотока.

Артериальная гиперемия является результатом образования в очаге В. большого количества вазоактивных веществ – медиаторов В., которые подавляя автоматию гладкомышечных элементов стенки артериол и прекапилляров, вызывают их расслабление. Это приводит к увеличение притока артериальной крови, ускоряет ее движение, открывает ранее не функционировавшие капилляры, повышает в них давление. Кроме того, приводящие сосуды расширяются в результате “паралича” вазоконстрикторов и доминирования парасимпатических влияний на стенку сосудов, ацидоза, гиперкалийионии, снижения эластичности окружающей сосуды соединительной ткани.

Венозная гиперемия возникает вследствие действия ряда факторов, которые можно разделить на три группы: 1) факторы крови, 2) факторы сосудистой стенки, 3) факторы окружающих тканей. К факторам, связанным с кровью, относится краевое расположение лейкоцитов, набухание эритроцитов, выход жидкой части крови в воспаленную ткань и сгущение крови, образование микротромбов вследствие активации фактора Хагемана и уменьшении содержания гепарина.

Влияние факторов сосудистой стенки на венозную гиперемию проявляется набуханием эндотелия, в результате чего просвет мелких сосудов еще больше суживается. Измененные венулы теряют эластичность и становятся более податливыми сдавливающему действию инфильтрата. И, наконец, проявление тканевого факторов состоит в том, сто отечная ткань, сдавливая вены и лимфатические сосуды, способствует развитию венозной гиперемии.

С развитием престатического состояния наблюдается маятникообразное движение крови – во время систолы она движется от артерий к венам, во время дистолы – в противоположном направлении. Наконец, движение крови может полностью прекратиться и развивается стаз, следствием которого могут быть необратимые изменения клеток крови и тканей.

Компонент воспаления «сосудистые реакции и изменения крово- и лимфооб­ращения» является результатом альтерации ткани. Понятие «сосудистые реак­ции» подразумевает изменения тонуса стенок сосудов, их просвета, крово- и лимфообращения в них, проницаемости сосудистых стенок для клеток и жид­кой части крови

При воспалении на разных стадиях сосудистых реакций происходят следую­щие важные и последовательные процессы.

• Повышение тонуса стенок артериол и прекапилляров, сопровождающееся уменьшением их просвета и развитием ишемии.

• Снижение тонуса стенок артериол, сочетающееся с увеличением их про­света, развитием артериальной гиперемии, усилением лимфообразования и лимфооттока.

• Уменьшение просвета венул и лимфатических сосудов, нарушение оттока крови и лимфы по ним с развитием венозной гиперемии и застоя лимфы.

• Дискоординированное изменение тонуса стенок артериол, венул, пре- и посткапилляров, лимфатических сосудов, сочетающееся с увеличением ад­гезии, агрегации и агглютинации форменных элементов крови, её сгуще­нием и развитием стаза.

Закономерный характер течения воспаления в значительной мере определяет­ся именно стереотипной сменой тонуса стенок и просвета микрососудов, а также крово- и лимфотока в них. Сосудистые реакции подразделяют на после­довательно развивающиеся в данном участке воспаления стадии ишемии, ве­нозной гиперемии, артериальной гиперемии и стаза.

Стадия экссудации и эмиграции лейкоцитов

Нарушение микроциркуляции является необходимой предпосылкой для развития последующих этапов воспаления. Только при замедлении кровотока и его полной остановке возможно накопление медиаторов воспаления на достаточно коротком отрезке сосудистого русла.

Механизмы эмиграции лейкоцитов и виды воспалительного инфильтрата

Из-за накопления хемокинов в очаге воспаления начинается эмиграция лейкоцитов, т.е. выход форменных элементов белой крови за пределы сосудистого русла в зону альтерации (рис. 5.2). Хемокины — это большая группа цитокинов, стимулирующая двигательную активность лейкоцитов. Они привлекают в очаг воспаления различные типы лейкоцитов, обеспечивая их адгезию с эндотелиальными клетками и транспорт через сосудистую стенку. По И.И. Мечникову, «движущей силой, началом» (primum movens) воспаления является скопление лейкоцитов вокруг флогогенного агента. Согласно классической концепции, пока лейкоциты находятся внутри сосуда, воспаления нет. Как только начинаются выход из сосудов лейкоцитов, их скопление в месте повреждения, появляются основания говорить собственно о воспалении. Таким образом, внесосудистая миграция лейкоцитов и их скопление в месте повреждения — одно из главных явлений при воспалительном ответе. Без выхода лейкоцитов и их скопления в одном месте в форме инфильтрата нет воспаления.

Рис. 5.2. Эмиграция лейкоцитов в очаг воспаления:

1 — нейтрофилы; 2 — поглощение флогогенного фактора; 3 — макрофаг; 4— медиаторы воспаления, обеспечивающие движение лейкоцитов к объекту фагоцитоза; 5 — флогогенный фактор

Скопление клеток в очаге воспаления называется воспалительным инфильтратом. Клеточный состав инфильтрата в значительной степени зависит от этиологического фактора. Так, если воспаление вызвано гноеродными микробами (стафилококками, стрептококками), то в инфильтрате преобладают нейтрофилы; если оно вызвано гельминтами или носит аллергический характер, то преобладают эозинофильные гранулоциты. При воспалениях, обусловленных возбудителями хронических инфекций (микобактериями туберкулеза, палочкой сибирской язвы), в инфильтрате содержится большое количество мононуклеаров. Разные клетки крови эмигрируют с разной скоростью. Последовательность выхода лейкоцитов в очаг острого воспаления была впервые описана И.И. Мечниковым и получила название закона Мечникова. Согласно этому закону первыми (спустя 1,5—2 ч после начала действия альтерирующего агента) в очаг острого воспаления выходят нейтрофилы, а максимальное накопление этих клеток наступает через 4—6 ч. Эмигрировавшие нейтрофилы формируют аварийную линию защиты и подготавливают фронт работы для макрофагов. Недаром их называют клетками «аварийного реагирования». Затем (через 3—4 ч), когда реакция в очаге воспаления становится кислой и нейтрофилы вследствие этого теряют свою активность, начинают выходить моноциты, большое количество которых обнаруживается только через 10—15 ч. В последнюю очередь эмигрируют лимфоциты. В настоящее время последовательность эмиграции объясняется неодновременностью появления хемокинов и молекул адгезии, специфичных для различных лейкоцитов.

Главным местом эмиграции лейкоцитов является посткапиллярная венула, так как эндотелиальные клетки, выстилающие просвет венул, обладают наибольшей адгезивной способностью. Выхожде- нию из тока крови через стенку посткапиллярных венул лейкоцитов предшествует их краевое стояние, прилипание к внутренней поверхности стенки сосудов, обращенной в сторону воспаления.

Прилипанию (адгезии) лейкоцитов к эндотелиальным клеткам сосудов в последние годы уделяется особое внимание, так как управление процессом взаимодействия лейкоцитов с эндотелием открывает принципиально новые пути предупреждения воспалительной реакции. Создание ингибиторов синтеза адгезивных белков или избирательных блокаторов их рецепторов позволило бы предотвратить выход лейкоцитов за пределы сосудов, а следовательно, и развитие воспаления.

Чем же обусловлена более высокая адгезивность эндотелия в местах повреждения? Пока окончательного ответа на этот вопрос дать нельзя. Сейчас это связывают со многими факторами, из которых наиболее важное значение имеет усиление синтеза адгезивных белков самими эндотелиальными клетками под влиянием определенных медиаторов воспаления, в частности хемокинов. Адгезины — молекулы, управляющие адгезивными реакциями. Они вырабатываются не только эндотелиальными клетками, но и лейкоцитами. В настоящее время известно несколько классов молекул клеточной адгезии. Наиболее изученными из них являются селектины и интегрины. С участием селектинов происходят ранние этапы эмиграции лейкоцитов — их выход из осевого кровотока в пристеночный и неокончательная, обратимая адгезия к эндотелию сосудов. Интегрины окончательно прикрепляют лейкоциты к эндотелию, способствуют выходу лейкоцитов через стенку сосудов. Кроме того, интегрины обеспечивают взаимодействие клеток с белками внеклеточного матрикса после их эмиграции из сосудов.

В настоящее время описаны два наследственных синдрома — недостаточность лейкоцитарной адгезии I и II типов, в основе которых соответственно лежат дефекты (3-цепи интегринов и рецепторов селектинов. Нарушение адгезивных свойств лейкоцитов, связанное с низкой экспрессией на их поверхности молекул адгезии, ведет к неспособности лейкоцитов накапливаться в очаге воспаления и уничтожать в нем всё чужеродное.

Способствуют адгезии лейкоцитов к эндотелию микрососудов также изменения, происходящие в самих лейкоцитах при их активации. Во-первых, как уже говорилось, нейтрофилы в фазе инициации воспаления активизируются и образуют агрегаты. Агрегации лейкоцитов способствуют лейкотриены, ФАТ, С5а-фрагмент системы комплемента. И во-вторых, некоторые продукты, секретируемые самими лейкоцитами (лактоферрин), обладающие адгезивными свойствами и усиливающие прилипание.

После прикрепления к эндотелию лейкоциты начинают эмигрировать, проникая через межэндотелиальные щели. В последнее время существование другого пути эмиграции — трансэндотелиального переноса — подвергается сомнению. Прохождение лейкоцитов через базальную мембрану микрососудов осуществляется за счет высвобождения ими ферментов (коллагеназы, элластазы), обеспечивающих гидролиз волокон и основного вещества базальной мембраны.

Направление движения лейкоцитов определяется накоплением хемоаттрактантов (от лат. attractio — притяжение), причем концентрация хемоаттрактантов постепенно, ступенчато нарастает от сосудистой стенки к центру очага. Хемоаттрактанты — вещества, вызывающие движение лейкоцитов в сторону их большей концентрации. Активными хемоаттрактантами являются продукты жизнедеятельности бактерий, бактериальный эндотоксин, белки, полипептиды, продукты разрушенных клеток и частичной деградации коллагена. Свойствами хемоаттрактантов обладают С5а- и СЗа-фракции комплемента, кинины, простагландины, лейкотриены, ФАТ, ФИО, активный фактор Хагемана, активатор плазминогена, фибринопептид В, лимфокины, монокины, иммуноглобулины.

В настоящее время механизм распознавания хемоаттрактантов ассоциируется с молекулярной рецепцией. Предполагается существование на поверхности лейкоцитов специфических рецепторов для различных хемоаттрактантов. Взаимодействие хемоаттрактантов с соответствующими рецепторами приводит к изменению активности ферментов мембраны, что вызывает функциональные сдвиги в сократительных органеллах клетки. Механизмы рецепции и природа этих рецепторов в настоящее время являются предметом самого внимательного изучения.

Интенсивность миграции лейкоцитов зависит от образования хемотаксических веществ.

При остром воспалении в основном эмигрируют полиморфноядерные лейкоциты, и воспалительный инфильтрат в подавляющем количестве состоит из них. Скопившиеся нейтрофилы приступают к фагоцитозу не только бактерий в случае инфицированной раны, но и к разрушению (лизису) нежизнеспособных тканей за счет выделения ферментов во внеклеточную среду (рис. 5.3). Секреция нейтрофилами протеиназ, катепсинов, миелопероксидазы и других эндогенных оксидантов, катионных белков, кислых гидролаз, колла- геназы, эластазы воздействует на межклеточный матрикс очага воспаления, приводя к его деградации. Продукты стимулированных нейтрофилов вызывают дегрануляцию тучных клеток, действуют на тромбоциты, влияют на бласттрансформацию лимфоцитов, стимулируют хемотаксис макрофагов, активизируют систему комплемента, кининовую систему и др. Таким образом, нейтрофилы являются основными эффекторными клетками острого воспаления. Они фагоцитируют микроорганизмы и в меньшей степени некротизированные массы, выделяют разнообразные медиаторы, обеспечивающие развитие реакций воспалительного процесса.

Существуют варианты воспаления, которые характеризуются первоначальным возникновением инфильтратов, преимущественно состоящих из мононуклеарных клеток — моноцитов, макрофагов, иммунокомпетентных клеток лимфоидного ряда. К мононуклеарам может присоединяться определенное количество нейтрофилов, эо- зинофилов. Развитие подобных инфильтратов имеет место при хроническом воспалении, иммунном воспалении, индуцированном гиперчувствительностью замедленного типа. Первоначальное развитие мононуклеарной инфильтрации имеет место, к примеру, если микробы (микобактерии туберкулеза, риккетсии, спирохеты, хламидии) поглощаются макрофагом, но при этом не погибают, а продолжают в них паразитировать. В таком случае макрофаги активируются и непрерывно секретируют медиаторы воспаления, в том числе и хемоаттрактанты, которые привлекают из крови в очаг альтерации новые порции лейкоцитов, прежде всего моноцитов и лимфоцитов.

Рис. 5.3. Значение эмиграции лейкоцитов в очаг острого воспаления

Итак, нейтрофилы образуют первый защитный барьер. Эмигрировавшие нейтрофилы активно включаются в воспалительный процесс, приступая к фагоцитозу. Фагоцитоз — это основной защитный механизм при воспалении. Действие нейтрофилов направлено на устранение флогогенного фактора. Кроме того, нейтрофилы, разрушая омертвевшие ткани, подготавливают фронт работы для макрофагов. Нейтрофилы по мере выполнения своих функций распадаются, превращаясь в гнойные тельца.

На смену нейтрофилам приходят моноциты, они образуют второй защитный барьер. Их действие направлено главным образом на устранение, фагоцитоз поврежденных и погибших клеток самого организма. Макрофаги и лимфоциты выделяют монокины и лимфо- кины, регулирующие взаимодействие всех клеточных элементов, участвующих в воспалительном процессе; велика их роль в формировании иммунных реакций, в стимуляции фибробластов, пролиферации клеток, т.е. в репаративной регенерации. Некоторые из этих цитокинов обладают пирогенной активностью, т.е. способны вызывать развитие лихорадки, которая сопровождает воспаление.

Первоначально, как уже указывалось, при остром воспалении в инфильтрате преобладают нейтрофилы. Однако при нормальном развитии воспалительного процесса уже через 16—24 ч количество моноцитов в инфильтрате превышает количество нейтрофилов. Но не всегда нейтрофилы своевременно замещаются мононуклеарами. В этих случаях воспаление приобретает затяжной хронический характер. Это возможно при снижении бактерицидности нейтрофилов в силу их фагоцитарной недостаточности врожденного или приобретенного характера, при избыточном выделении медиаторов воспаления, которые приводят к стойким нарушения микроциркуляции, деструкции соединительной ткани и выраженном накоплении хемо- таксических веществ, привлекающих новые порции нейтрофилов. Последнее возможно при пролонгированном действии на ткань или орган повреждающих факторов. Способствует развитию хронического воспаления длительное повышение в крови уровней катехоламинов и глюкокортикоидов (при хроническом стрессе). Хронизация воспаления сопровождается изменениями медиаторного фона. Если общепринятыми медиаторами острого воспалительного процесса являются ИЛ-1 и ФНО-а, то медиаторами подострого и хронического воспаления служат ИЛ-4, ИЛ-6, активирующие лимфоциты и способствующие преобразованию макрофагов в эпителиоидные клетки.

Сегодня я хотел бы опубликовать статью, которая посвящена проблеме воспалительного процесса в организме. Статья эта изобилует специальными медицинскими терминами, поэтому, хоть и рассматривает причины и симптомы воспалений, будет интересна немногим. Я ее публикую прежде всего для себя. Так сказать, на заметку. Ну и может кому из вас пригодится.

Механизм развития воспалительного процесса

Многие внешние признаки воспаления объясняются как раз развитием артериальной гиперемии. По мере возрастания воспалительного процесса артериальная гиперемия равномерно сменяется венозной.

Венозная гиперемия определяется дальнейшим расширением сосудов, замедлением движения кровотока, феноменом краевого стояния лейкоцитов и их умеренной эмиграцией. Довольно резким усилением процессов фильтрации, нарушением реологических свойств крови организма.

Факторы, которые влияют на переход артериальной гиперемии в венозную, возможно разделить на две основные группы: внесосудистые и внутрисосудистые.

К внутрисосудистым факторам относят – сильное сгущение крови в результате перехода некоторого количества плазмы из крови в воспаленную (поврежденную) ткань.

Пристеночное стояние лейкоцитов, набухание эндотелия в кислой среде, образование микротромбов — как следствие агрегации тромбоцитов и усиление свертываемости крови.

Избыточное накопление в очаге воспалительного процесса медиаторов воспаления с сосудорасширяющим действием на ряду с ионами водорода, сдавление экссудатом стенок вен и лимфатических сосудов, это внесосудистые факторы.

Венозная гиперемия первоначально приводит к развитию престаза — толчкообразному, маятникообразному движению крови. Во время систолы кровь движется от артерии к венам, во время диастолы — в обратном направлении, так как кровь встречает препятствие к оттоку по вене в виде возросшего в них кровяного давления. И наконец, поступление крови из-за закупорки сосудов агрегатами клеток или микротромбами полностью прекращается, развивается стаз.

Как возникает застой крови и лимфы

Нарушение микроциркуляции является необходимой предпосылкой для развития последующих этапов воспаления. Только при замедлении кровотока и его полной остановки становится возможным накопление медиаторов воспаления на достаточно коротком отрезке сосудистого русла.

Внесосудистая миграция лейкоцитов и их скопление в месте повреждения — одно из главных явлений при воспалительном ответе. Без выхода лейкоцитов и их скопления в одном месте в форме инфильтрата нет воспаления.

Скопление клеток в очаге воспаления носит название воспалительного инфильтрата. Клеточный состав инфильтрата значительно зависит от этиологического фактора.

В том случае, если воспаление вызвано гноеродными микробами (стрептококки, стафилококки), то в инфильтрате преобладают нейтрофилы. Если оно вызвано гельминтами или носит аллергический характер, то преобладают эозинофильные гранулоциты.

При воспалениях, обусловленных возбудителями хронических инфекций (микобактерии туберкулеза, палочки сибирской язвы), в инфильтрате содержится большое количество мононуклеаров. Разные клетки крови эмигрируют с разной скоростью.

Закон Мечникова

Последовательность выхода лейкоцитов в очаг острого воспаления была впервые описана И. И. Мечниковым и подучила название закона Мечникова. Согласно этому закону первыми в очаг острого воспаления, спустя 1.5-2 ч после начала действия альтерирующего агента, выходят нейтрофилы, а максимальное накопление этих клеток наступает через 4-6 ч.

Эмигрировавшие нейтрофилы формируют аварийную линию защиты и подготавливают фронт работы для макрофагов. Недаром их называют клетками «аварийного реагирования». Затем, через 3-4 ч начинают выходить моноциты. И последнюю очередь эмигрируют лимфоциты.

В настоящее время последовательность эмиграции объясняется не одновременностью появления хемокинов и молекул специфичных для различных лейкоцитов.

Главным местом эмиграции лейкоцитов является посткапиллярная венула, так как эндотелиальные клетки, выстилающие просвет венул, обладают наибольшей адгезивной способностью. Выхождению из тока крови через стенку посткапиллярных венул лейкоцитов предшествует их краевое стояние, прилипание к внутренней поверхности стенки сосудов, обращенной в сторону воспаления.

Прилипанию (адгезии) лейкоцитов к эндотелиальным клеткам сосудов в последние годы уделяется особое внимание, ибо управление процессом взаимодействия лейкоцитов с эндотелием открывает принципиально новые пути предупреждения воспалительной реакции.

Создание ингибиторов синтеза адгезивных белков или избирательных блокаторов их рецепторов дало бы возможность предотвратить выход лейкоцитов за пределы сосудов, а, следовательно, и предотвратить развитие воспаления.

Чем же обусловлена более высокая адгезивность эндотелия в местах повреждения? Пока окончательного ответа на этот вопрос дать нельзя. Сейчас это связывают со многими факторами, из которых наиболее важное значение имеет усиление синтеза адгезивных белков самими эндотелиальными клетками под влиянием определенных медиаторов воспаления, в частности хемокинов.

Адгезины — молекулы, управляющие адгезивными реакциями. Они вырабатываются не только эндотелиальными клетками, но и лейкоцитами.

Способствуют адгезии лейкоцитов к эндотелию микрососудов и изменения, происходящие в самих лейкоцитах при их активации. Во-первых нейтрофилы в фазе инициации воспаления активизируются и образуют агрегаты. Агрегации лейкоцитов способствуют лейкотриены.

И, во-вторых, некоторые продукты, секретируемые самими лейкоцитами (лактоферрин), обладают адгезивными свойствами и усиливают прилипание.

После прикрепления к эндотелию лейкоциты начинают эмигрировать, проникая через меж эндотелиальные щели. В последнее время существование другого пути эмиграции — трансэндотелиальпого переноса — подвергается сомнению.

Видео по очистке лимфы

В завершение материала, все-же хочу поделиться с вами доступным объяснением всех воспалительных процессов в организме от Ольги Бутаковой. В видео рассказывается про механизмы лимфотока, про очищение лимфатической системы.

Экссудация и экссудаты. Эмиграция лейкоцитов и их роль в воспалении. Хроническое воспаление

— увеличивает её проходимость для лейкоцитов.

Эмиграция – активный процесс. Требует ионов Са++, Мg++,О2.

3. Движение лейкоцитов в воспалённой ткани.

Лейкоциты от наружной стенки сосуда движутся к центру очага воспаления. Направление движения лейкоцитов в воспалённую ткань называется положительным хемотаксисом. В очаг воспаления лейкоциты привлекаются специальными веществами.

Эти вещества называются хемотоксинами. Они бывают 2-х групп:

1. Цитотоксины – привлекают лейкоциты непосредственно.

2. Цитотоксигены – способствуют образованию цитотоксинов.

Цитотоксины:

— компоненты комплемента

— калликреин

— денатурированные белки

— бактериальные токсины

— казеин

— пептон идр.

Цитотоксиногены:

— трипсин

— плазмин

— коллагеназа

— комплекс Аg + АТ

— гликоген

— бактериальные токсины

— лизосомальные ферменты

— лимфокины

Торможение хемотаксиса :

— гидрокортизон

— простагландины Е1 и Е2

— ЦАМФ

— колхицин

Механизм хемотаксиса:

1. Сокращение актомиозиновых нитей псевдоподий лейкоцитов.

2. Участие ионов Са++ и Мg++.

3. Увеличение поглощения О2.

4. Лейкоциты идут вслед за токами жидкости экссудата.

Сначала в очаг воспаления выходят нейтрофилы, затем – моноциты. Это закон эмиграции лейкоцитов Мечникова.

Причина:

1. Нейтрофилы более чувствительны к влиянию хемотоксинов.

2. Иной механизм эмиграции у моноцитов: моноцит внедряется в тело эндотелиальной клетки в виде большой вакуоли, проходит через её тело и выходит наружу. А не через межклеточные щели. AAAAAAAAAAAAAAAAAAAAAAAAAAA

Роль нейтрофилов в очаге воспаления:

1. Появляются в очаге воспаления через 10 мин. после начала реакции воспаления.

2. Количество нейтрофилов достигает максимума через 4 – 6 час. после начала воспалительной реакции.

3. Фагоцитоз бактерии, продуктов распада, чужеродных частиц.

4. Поставка ферментов, катионных белков, активных форм кислорода.

5. Разрушение нейтрофилов – их остатки есть стимул для поступления и активности моноцитов.

Роль моноцитов в очаге воспаления:

1. Появляются в очаге воспаления через 16 – 24 час. после начала реакции воспаления.

2. Количество моноцитов достигает максимума через 72 час после начала.

3. Постепенно трансформируются в макрофаги:

— увеличивается объём цитоплазмы и органелл;

— увеличивается количество митохондрий и лизосом;

— образуются фаголизосомы;

— образуется медиаторы воспаления

— в результате активируется фагоцитоз!

Эмиграция и активизация моноцитов зависит от предыдущего выхода нейтрофилов. В эксперименте моноциты не накапливается в очаге в условиях нейтропении.

Вся масса клеток, которая накапливается в очаге воспаления, образует воспалительный инфильтрат. Этот инфильтрат есть причина припухлости в очаге воспаления.

Пролиферация

Пролиферация – размножение клеток в очаге воспаления. Начинается параллельно со стадией альтерации и экскреции с периферии очага.

Последовательность событий:

1. Очищение очага и образование полости:

— фагоцитоз м/о, продуктов распада, чужеродных агентов;

— удаление остатков лейкоцитов и разрушение тканей (гноя) хирургически;

— прорыв (самопроизвольное вскрытие гнойника).

2. В очаге появляются фибробласты и фиброциты: они образуются при дифференцировке макрофагов, камбиальных, адвентициальных, эндотелиальных клеток, а также стволовых клеток соединительной ткани – полибластов.

3. фибробласты образуют новые межклеточные вещества (гликозаминогликаны, коллаген, эластин, ретикулин). Коллаген – главный компонент рубцовой ткани.

4. Образование рубцовой ткани.

Стимуляторы и ингибиторы пролиферации.

1. Макрофаги:

— образуют фактор роста фибробластов. Это белок, который увеличивает пролиферацию фибробластов и синтез коллагена;

— привлекают фибробласты в очаг воспаления;

— образуют фибронектин и ИЛ – 1;

— стимулируют трансформацию клеток в фибробласты.

2. Т – лимфоциты:

— активизируются протеиназами. Протеиназы образуются в очаге воспаления при распаде тканей;

— образуют медиаторы воспаления;

— регулируют функции фибробластов.

3. Тромбоцитарный фактор роста фибробластов

4. Соматотропин

5. Инсулин

6. Глюкагон

7. Кейлоны – термолабильный гликопротеин, мм40000ЕД. Роль: ингибирование клеточного деления. Источник: сегментоядерные нейтрофилы.

Регенерация

Регенерация.

1. Разрастание соединительной ткани.

2. Новообразование сосудов.

3. Заполнение дефекта ткани.

Хроническое воспаление

Мечников «Воспаление – защитная реакция по своей сути, но эта реакция, к сожалению, не достигла своего совершенства.»

Закономерности хронизации воспаления

1. Возбудители: туберкулёз, проказа, листериоз. Токсоплазмоз, сап и др.

2. В очаге воспаления с самого начала накапливаются не сегментоядерные нейтрофилы, а моноциты

3. Активирование макрофагов

— моноциты в очаге воспаления трансформируются в макрофаги

— макрофаги фагоцитируют м/о

— м/о внутри макрофага не погибает, а продолжает жить и размножаться внутри макрофага

Макрофаг, котрый содержит живые м/о, называется активированным макрофагом

4. Выделение хемотоксинов

Хемотоксины – это вещества, которые привлекают в очаг новые макрофаги. Источник хемотоксинов – активированные макрофаги.

Хемотоксины:

— лейкотриены С4 и Д4

— простагландины Е2

— продукты распада коллагена

Предшественники хемотоксинов: компоненты комплемента С2, С4, С5, С6.

5. Повышение проницаемости капилляров

При хроническом воспалении обязательно повышается проницаемость капилляров, что приводит к увеличенному притоку новых и новых моноцитов в очаг воспаления.

Механизм повышения проницаемости капиллярной стенки

1. активированные макрофаги образуют вещества

— лейкотриены С4 и Д4

— фактор агрегации тромбоцитов

— кислород

— коллагеназа и др.

2. Эти вещества:

— разуплотняют баз мембрану стенки капилляра

— сокращают клетки эндотелия и увеличивают межклеточные щели

В результате проницаемость капиллярной стенки увеличивается.

6. Заякоривание макрофагов. В очаге моноциты и макрофаги выделяют фибронектин, который прочно присоединяет их к соединительной ткани.

7. Кооперация между макрофагами и лимфоцитами

Скопление моноцитов. Макрофагов и лимфоцитов образует воспалительный инфильтрат (гранулема)

Возбудители поглощается макрофагами, но не уничтожаются, а остаются живыми внутри макрофага.

Такой фагоцитоз называется незавершенным.

Взаимодействие макрофагов и лимфоцитов направлено на завершение фагоцитоза и уничтожение возбудителя. Для того, чтобы завершить фагоцитоз, макрофаги и лимфоциты взаимно стимулируют друг друга.

Механизмы их кооперации:

— макрофаги выделяют ИЛ-1, следовательно повышается активность лейкоцитов

— лейкоциты выделяют лимфокины, следовательно повышается активность макрофагов.

Страница: 1 2 3

59. Стадии, пути и механизмы эмиграции лейкоцитов при воспалении. Основные хемоаттрактан­ты, обусловливающие миграцию лейкоцитов.

Эмиграция лейкоцитов(лейкодиапедез) – выход лейкоцитов из просвета сосудов ч/з сосудистую стенку в окружающую ткань. Этот процесс совершается и в норме, но при В. приобретает гораздо большие масштабы. Смысл эмиграции состоит в том, чтобы в очаге В. скопилось достаточное число клеток, играющих роль в развитии В. (фагоцитоз и т.д.).

В настоящее время механизм эмиграции изучен довольно хорошо. Эмиграция лейкоцитов в очаг В. начинается с их краевого (пристеночного) стояния (маргинация лейкоцитов), которое может продолжаться несколько десятков мин. Затем гранулоциты (через межэндотелиального щели) и агранулоциты (путем цитопемзисм – трансэндотелиального переноса) проходят через сосудистую стенку и продвагиются к объекту фагоцитирования. Лейкоциты выходят за пределы сосуда на стыке между эндотелиальными клетками. Это объясняется округлением эндотелиоцитов и увеличением интервалов между ними. После выхода лейкоцитов контакты восстанавливаются. Амебиодное движение лейкоцитов возможно благодаря обратимым изменениям состояния их цитоплазмы и поверхностного натяжения мембран, обратимой “полимеризации” сократительных белков – актина и миозина и использованию энергии АТФ анаэробного гликолиза. Направленное движение лейоцитов объясняется накоплением в очаге В. экзо- и эндогенных хемоаттрактантов– веществ индуцирующих хемотаксис, повышением температуры (термотаксис), а также развитием условий для гальвано- и гидромаксиса.

Функцию эндогенных хемоаттрактантов выполняют фракции системы комплемента, в особенности компонент С5а. Свойствами хемоаттрактантов обладают кинины и активированный фактор – Хагемана. Экзогенными хемоаттрактантами являются пептиды бактериального происхождения, в особенности те, которые содержатN-фармиловые группы.

В эмиграции лейкоцитов в очаг В. наблюдается определенная очередность: сначала эмигрируют нейтрофильные гранулоциты, моноциты, лимфоциты. Более позднее проникновение моноцитов объясняется их меньшей хемотаксической чувствительностью. После завершения воспалительного процесса в очаге наблюдается постепенное исчезновение клеток крови, начиная с тех лейкоцитов, которые появились раньше (нейтрофильные гранулоциты). Позже элиминируются лимфоциты и моноциты.

Клеточный состав экссудата в значительной степени зависит от этиологического фактора В. Так, если В. вызвано гноеродными микробами (стафилококки, стрептококки), то в вышедшей жидкости преобладают нейтрофильные гранулоциты, если оно протекает на иммунной основе (аллергия) или вызвано паразитами (гельминты), то наблюдается множество эозинофильных гранулоцитов. При хроническом воспалении (туберкулез, сифилис) в экссудате содержится большое число мононулеаров (лимфоциты, моноциты).

В очаге В. осуществляется активное движение лейкоцитов к химическим раздражителям – хемоаттрактантам в соответствии с градиентами их концентрации. Ориентированное движение клеток и организмов под влияеми химических раздражителей – хемоаттрактантов получило название – хемотаксис. В хемотаксисе лейкоцитов большое значение имеет система комплемента и прежде всего компоненты С3и С5. Лейкотаксически активные компоненты системы комплемента С3и С5образуются в очаге В. под влиянием различных ферментов: трипсина, тромбина, плазмы, уровень которых в условиях альтерации возрастает.

После взаимодействия хемоаттрактантов со своими рецепторами на поверхности нейтрофилов и активированных моноцитов, хаотическое движение фагоцитов прекращается. Фагоциты начинают ориентировано перемещаться по направлению к объекту эндоцитоза в соответствии с градиентами концентрации хемоаттрактантов, то есть становятся ориентированными. Процесс эмиграции может не только стимулироваться, но и подавляться. Рост содержания в очаге В. кортизола тормозит ориентированный хемотаксис нейтрофилов. Гиперкортизолемия, тормозящая миграцию ориентированных полиморфонуклеаров, направлена на предотвращение трансформации В. из защитной в патологическую реакцию.

60. Определение понятия и биологическая роль фагоцитоза (И.И. Мечников). Стадии фагоцито­за, механизмы бактерицидности фагоцитов. Причины и виды нарушения фагоцитоза. Наследственные дефекты фагоцитов.

Проникнув в очаг В., фагоциты выполняют свою главную фагоцитарную функцию

Фагоцитоз– защитно-приспособительная реакция организма, заключающаяся в узнавании, активном захвате (поглощении) и переваривании м/о, разрушенных клеток и инородных частиц специализированными клетками – фагоцитами. К ним относятся полиморфно-ядерные лейкоциты (в основном нейтрофилы), клетки системы фагоцититрующих мононуклеаров (моноциты, тканевые макрофаги), а также клетки Купфера в печени, мезангиальные клетки почек, глиальные клетки в ЦНС и др.

Рзличают четыре стадии фагоцитоа: приближение (хемотаксис), прилипание (аттракция, адгезия), захват фагоцитиремого объекта (поглощение), внутриклеточное переваривание. В процессе узнавания большую роль играют особые компоненты сыворотки крови, которые являются молекулярными посредниками при взаимодействии микробов с фагоцитами и обуславливающие усиление фагоцитоза – опсонины. К ним относят антитела IgGi, IgG3, IgM, иммуноглобулины IgAl, IgA2, термолабильные субкомпоненты комплемента. Основная роль при поглощении принадлежит сократительным белкам, способствующим образованию псевдоподий.

Поглощение объекта лейкоцитами может происходить двумя способами:

I) контактирующим с объектом участок цитоплазмы втягивается внутрь клетки, а вместе с ним втягивается и объект;

2) фагоцит прикасается к объекту своими длинными и тонкими псевдоподиями, а потом всем телом подтягивается в сторону объекта и обволакивает его. И в том и в другом случае инородная частица окружена плазматической мембраной и вовлечена внутрь клетки. В итоге образуется своеобразная гранула с инородным телом (фагосома). Затем фагосома приближается к лизосоме, их мембраны сливаются, образуется единая вакуоль, в которой находятся поглощенноая частица и лизосомальные ферменты (фаголизосома). В фаголизосомах начинается переваривание поглощенного объекта. Эффективность фагоцитоза возрастает, когда в процесс подключается так называемая кислородная система. При фагоцитозе повышается потребление кислорода, причем столь резкое, что его принято называть “респираторным взрывом”. Смысл столь резкого (до 10 раз) повышения потребления кислорода состоит в том, что он используется для борьбы с микроорганизмами. Происходит образование токсичных для микробов активных форм О2– перекиси водорода, гидроксильных радикалов, супероксидного аниона, синглетного кислорода. Эти высокоактивные соединения вызывают перекисное окисление липидов, белков, нуклеиновых кислот, углеводов и при этом повреждают построенные из этих веществ клеточные структуры микроорганизмов.

В этой ситуации фагоцит и сам подвергается агрессивному действию названных веществ, но он обладает мощным механизмом, благодаря которому избыточного накопления активных форм кислорода не происходит. Защитную роль при этом играют прежде всего два фермента: глютатионпероксидаза и глютатионредуктаза, роль которых заключается в том, что первый переносит водород на окисленный глютатион, а второй – снимает этот водород и передает его на Н2О2, в результате чего образуются две молекулы воды.

Определенную роль играет каталаза, выводящие из клеток избыток перекиси водорода. Супероксидный анион обезвреживается особым ферментом — супероксиддисмутазой. У фагоцитов имеются и другие не связанные с кислородом (кислороднезависимые) механизмы борьбы с микроорганизмами. К ним относятся: лизоцим, разрушающий мембраны бактерий; лактоферрин, конкурирующий за ионы железа и, наконец, дефензины (белки со структурой насыщенной аргинином), катионные белки, нарушающие структуру мембран микроорганизмов. Совместное действие механизмов обеих групп приводит к разрушению объектов фагоцитоза.

Однако наряду с завершенным фагоцитозом в микрофагах наблюдается, например, при некоторых инфекциях фагоцитоз незавершенный или эндоцитобиоз, когда фагоцитированные бактерии или вирусы не подвергаются полному перевариванию, а иногда даже начинают размножаться в цитоплазме клетки. Эндоцитобиоз объясняют недостатком или даже отсутствием в лизосомах макрофагов антибактериальных катионных белков, что снижает переваривающую способность лизосмальных ферментов. Фагоцит, поглотивший бактерии, но не способный их переварить становится переносчиком инфекции по организму, способствует ее дессиминации.

Выявлены болезни, сопровождающиеся первичными (врожденными) или вторичными (приобретенными) дефектами фагоцитоза – “болезни фагоцитов”. К ним относится так называемая хроническая гранулематозная болезнь, возникающая у детей, в фагоцитах которых из-за дефекта оксидаз нарушено образование перекисей и, следовательно, процесс инактивации микробов. Сниженная спосбность к уничтожению бактерий выявлено у людей нейтрофилы которых синтезируют недостаточное количество миелопироксидазы, глукоза-6-фосфатдегидрогеназы, пируваткиназы.

Необходимо отметить, что особую роль в развитии учения о фагоцитозе сыграли исследования И.И.Мечникова. И.И.Мечников (1892) разработал учение о фагоцитозе и отвел ему важнейшую роль в динамике В. На основании своих наблюдений он построил биологическую теорию В. Он впервые рассмотрел воспалительный процесс с эволюционных позиций, заложил основы сравнительной патологии.

Перекись водорода выступает в роли хемоаттрактанта для лейкоцитов

Постоянно совершенствующиеся вирусы и бактерии не дают покоя нашим защитным системам. За миллионы лет эволюции В-лимфоциты позвоночных научились синтезировать антитела, Т-киллеры безошибочно распознают мишени, судьбе которых после этого не позавидуешь, а разнообразные клетки-хелперы и регуляторы по мере надобности усиливают или ослабляют иммунный ответ.

Но всё это лишь вторая часть универсальной реакции, и на её развитие требуется как минимум неделя. Начинается же противостояние с неспецифичных защитных редутов: слизистые отделения, задерживающие проникновение «врагов» в организм; ферменты, разрушающие бактериальные стенки; кислая или щелочная среда; плотные контакты между эпителиальными клетками, исключающие проход любых частиц. В том же случае если целостность покровов нарушается, за дело принимаются макрофаги, которые начинают пожирать всё и вся, и нейтрофилы, превращающие небольшую рану в настоящий «пожар» за счёт активных форм кислорода, «сжигающих» почти всё живое.

Реклама

Филипп Нитхаммер из Медицинской школы Гарварда и его коллеги сумели доказать, что

перекись водорода, помимо своих окисляющих свойств, выступает ещё и в роли «приманки» для лейкоцитов, которые за 20 минут покрывают расстояние в сотни микрометров, двигаясь к центру воспаления.

Работа учёных принята к публикации в Nature.

Любое повреждение, будь то заноза, ожог, обморожение, ржавый гвоздь или асептический разрез скальпелем, приводит к развитию воспаления. Эта реакция настолько универсальна, что все её этапы изучены и расписаны буквально по часам.

А вот молекулы, заставляющие клетки мигрировать в очаг или, наоборот, покидать его, известны пока далеко не все. Поиск таких молекул затруднен из-за их, во-первых, небольшой концентрации, а во-вторых, кратковременности появления в очаге воспаления; да и прочего «мусора» там в этот момент настолько много, что выудить искомое соединение не так-то просто.

Принцип «знать, что искать» неплохо сработал для пептидов, связывающихся с характерными рецепторами на поверхности «вербуемых» клеток. Основная проблема в определении новых факторов — понять их природу.

Это стало самым трудным и в работе Нитхаммера: трудно поверить, что обычная перекись водорода может играть такую же роль, как и сложные пептиды.

Точно так же, как в конце прошлого века ныне нобелевские лауреаты поверили в оксид азота, регулирующий тонус сосудов. Справедливости ради стоит отметить, что подобную гипотезу насчет пероксида высказывали и ранее, но частично подтвердить её удалось только in vitro.

Авторы нынешней работы пошли даже значительно дальше: они доказали новую роль перекиси на примере не отдельных тканей, а целого организма, ограничившись впрочем пока лишь личинкой рыбки данио. Ещё на одноклеточной стадии эмбрионального развития в геном рыбки встроили «пероксидный сенсор», сшитый с желтым флуоресцирующим белком. В результате по интенсивности и спектру флуоресценции можно было оценить концентрацию перекиси водорода в любой ткани рыбки.

Ученые предпочли работать с хвостом, делая на нем насечки и наблюдая за изменением яркости, а вместе с ним и за миграцией в очаг воспаления лейкоцитов. «Пожар» начинался уже через 3 минуты, достигая максимума через 20. Подобный взрыв собирал лейкоциты с участка диаметром 200 микрометров, что в десятки раз превышает размер самих иммунных клеток.

Синтез перекиси водорода в окрестности раны на хвосте рыбки данио через 3, 17 и 61 минут (сверху вниз). Концентрация перекиси показана цветом от низкой (чёрный, синий и зелёный) до высокой (жёлтый, красный и белый). Размерная шкала – 100 микрон. // P.Niethammer

Но и на этом открытия Нитхаммера не закончились: ученые продемонстрировали, что перекись в тканях в первые минуты после повреждения синтезируют не специализированные клетки крови, а сами эпителиальные клетки. Делают они это благодаря ферменту duox: в его отсутствие ни перекиси, ни лейкоцитов в ране практически не обнаруживалось.

Это очередное подтверждение тому, что сигнальные системы в нашем организме могут быть гораздо проще, чем кажется на первый взгляд.

Хотя возникновение этой системы осталось за рамками исследования, не исключено, что сигнальную роль перекись приобрела вторично. Сначала покровные клетки синтезировали её для защиты от бактерий, а с появлением специализированных защитных клеток эта же молекула стала для них сигналом. Привычные же нашим клеткам защитные пептиды появились миллионы лет спустя.

СТАДИИ ФАГОЦИТОЗА, ИХ МЕХАНИЗМЫ И РАССТРОЙСТВА

Процесс фагоцитоза подразделяется на 4 стадии:

1. Приближение к объекту фагоцитоза;

2. Прилипание фагоцита к поверхности объекта (распознавание рецепторами фагоцита опсонических детерминант объекта);

3. Погружение объекта в цитоплазму фагоцита;

4. Переваривание (или шире – киллинг-эффект, деградация объекта).

Приближение может быть и случайным, особенно, у фиксированных фагоцитов. Однако главным его механизмом служит хемотаксис.

Хемотаксисом называется направленное движение живых клеток по градиенту концентрации какого-либо распознаваемого ими вещества. Вещества, привлекающие клетки, называются хемоаттрактантами. По сути дела, хемоаттрактивная чувствительность, присущая всем лейкоцитам, включая не фагоцитирующие клетки – это прообраз обоняния на одноклеточном уровне.

Хемоаттрактанты, если они имеются на поверхности выделяющего их объекта, являются в то же самое время, и опсонинами, поскольку прямая ассоциация фагоцитарного рецептора хемоаттрактанта с его лигандом обеспечивает опсонизацию, то есть способствует прилипанию и дополнению клеточного «обоняния» своего рода осязанием. Например, и хемоаттрактантами, и опсонинами служат специфические иммуноглобулины и факторы комплемента. Часть хемоаттрактантов не является опсонинами, поскольку не присутствует на поверхности мишени фагоцитоза, а лишь выделяется клетками-участниками воспаления. Таковы интерлейкины и пептидные хемотаксические факторы.

Наряду с хемотаксисом различают хемокинез – явление не направленного увеличения локомоторной активности клеток под влиянием медиаторов воспаления. Например, гистамин, действуя на Н1-рецепторы нейтрофилов и эозинофилов, активирует их подвижность, но не обязательно в направлении нарастающего градиента своей концентрации.

Фагоцитирующие клетки имеют поверхностные рецепторы хемоаттрактантов. Хемоаттрактанты могут быть экзогенными и эндогенными, специфическими для определенного вида лейкоцитов или же универсальными.

Основные группы хемоаттрактантов следующие:

> Микроорганизмы и их продукты, в частности, пентоды, содержащие М-формил-метионин – аминокислоту, инициирующую синтез любого из прокариотических белков, но не используемую трансляционной системой эукариот. Благодаря наличию у лейкоцитов рецептора к трипептиду с этой аминокислотой, они обладают аттракцией к «прокариотам вообще», то есть к той категории возбудителей, которая вызывает широчайший круг инфекционных воспалений. Некоторые липидные компоненты микробных оболочек из состава их липополисахаридов напоминают по строению арахидоновые производные и также оказывают универсальный хемоаттрактивный эффект на лейкоциты. Например, полисахариды из состава таких микроорганизмов привлекают нейтрофилы и макрофаги и напрямую связывают лейкоцитарный рецептор комплемента CR3. Это делает их продукт зимозан и препараты из данных микробов, в частности, пронермил. стимуляторами фагоцитоза и активаторами фагоцитов.

> Компоненты системы комплемента распознаются лейкоцитарными рецепторами и оказывают хемоаттрактивный и опсонизирующий эффект. На лейкоцитах – лимфоцитах, нейтрофилах, эозинофилах и макрофагах имеются несколько типов комплемент-чувствительных рецепторов. Например, рецептор CR1-типа служит для фагоцитоза иммунных комплексов. CR2 является воротами для проникновения в лимфоциты, антиген-представляющие клетки и эпителий носоглотки и шейки матки вируса Эпштейна-Барр. Таким образом, он участвует в патогенезе инфекционного мононуклеоза.

> Продукты повреждения и метаболизма клеток являются хемоаттрактантами для лейкоцитов. Клетки не обмениваются готовыми макроэргическими фосфатами и не передают друг другу свои программы. Поэтому, значительные количества ДНК и АТФ попадают в межклеточное пространство только при разрушении клеток. Следовательно, привлеченные ими лейкоциты оказываются в эпицентре альтерации. Пуриновые рецепторы на поверхности фагоцитов позволяют им двигаться в сторону нарастания концентрации этих метаболитов. Данный эффект известен под названием некротаксиса. Хемоаттрактивными для макрофагов (и фибробластов) являются и продукты деградации внеклеточных белков: фибрина (фибрин-пептид В), коллагена, а также фибронектин и тромбин. Повреждение клеточных мембран ведет к продукции арахидоновых метаболитов, многие из которых, особенно, лейкотриен В4, а также гидроксиэйкозатетраеновые кислоты и тромбоксан А2, служат хемоаттрактантами для нейтрофилов, макрофагов и эозинофилов.

> Некоторые другие медиаторы воспаления могут быть хемоаттрактантами, в том числе, избирательными для тех или иных клеток. К ним относятся пептиды, привлекающие моноциты: нейтрофильные катионные белки, С-реактивный белок, цитокины ИЛ-1 и кахексин, тромбоцитарный фактор роста, трансформирующий фактор роста b. Мастоциты выделяют хемотаксические факторы для эозинофилов (содержит лейкотриен В4), нейтрофилов и лимфоцитов. Макрофаги способны генерировать хемотаксические пептиды для нейтрофилов и базофилов, в частности, именно так действует ИЛ-8. Макрофагальные продукты (фибронектин) могут привлекать фибробласты. Фактор активации тромбоцитов (ацетилглицериновый эфир фосфохолина), выделяемый макрофагами, гранулоцитами и эндотелием, оказывает мощное хемоаттрактивное действие на все лейкоциты.

> Иммунные комплексы и иммуноглобулины, особенно классов М и G, распознаются Fc-рецепторами лейкоцитов и оказывают хемоаттрактивный и опсонический эффект как через факторы комплемента, так и непосредственно.

Перемещение лейкоцита обеспечивается структурами цитоскелета: микрофиламентами и микротрубочками. Сопряжение функций цитоскелета и рецепции хемоаттрактанта достигается с участием ионов кальция, проникающих в эктоплазму фагоцита через каналы, которые открывают, занимая рецепторы, молекулы лиганда, а также выходящих из кальцисом. Пострецепторное сопряжение внутри фагоцита осуществляется по типичному механизму, вовлекающему систему G-белков.

Прилипаниелейкоцитов к объектам фагоцитоза связано с распознаванием поверхностных детерминант мишеней рецепторами фагоцитов.

Некоторые объекты, например, многие бактерии или грибки-сахаромицеты, распознаются рецепторами экзогенных хемоаттрактантов напрямую. Определенную роль при этом могут играть рецепторы формил-метионина и таких сахаров, как манноза и фруктоза. Рецептор комплемента CR1 связывает липополисахариды бактериальных клеточных стенок напрямую. Но большинство объектов фагоцитоза нуждается в опсонизации, то есть распознается только после прикрепления сывороточных факторов, к которым рецепторы фагоцитов обладают значительным аффинитетом. Сывороточные факторы, играющие при этом роль «адаптеров», называют опсонинами. Выше уже говорилось, что не все хемоаттрактанты являются опсонинами.

Наиболее активны как опсонины иммуноглобулины (G1 и G2, в меньшей степени М и Е). Они распознаются Fсg- или иными Fc-рецепторами. Фактор комплемента С3b и его нестабильная форма iС3b (как при прямой активации объектами фагоцитоза, так и при активации иммуноглобулинами и иммунными комплексами) также оказывают опсониновый эффект через рецепторы CR1-CR3.

Опсонизация в несколько раз увеличивает активность прилипания, причем эффект иммуноглобулинов и комплемента аддитивен. Опсонизация – мощный усилитель фагоцитарной активности. Однако иногда и опсониновый эффект дает осечки или даже оборачивается против организма.

Термин «опсонизация» может трактоваться расширительно. Фагоцитоз фибрина, деградирующих белков соединительной ткани, нуклеопротеидов усиливается после присоединения к ним фибронектина, что, по существу, делает этот макрофагальный продукт опсонином при рассасывании тромбов, рубцов и клеточного детрита.

С-реактивный белок фактически также является ко-опсонином, так как связывает С-белок пневмококков и других микробов и опосредует прикрепление к ним факторов комплемента и фагоцитов. Сходным действием в отношении некоторых бактерий обладает лизоцим.

Активацию фагоцитов подавляют некоторые продукты бактерий («агрессины»). Так, микобактерии выделяют липоарабиноманнан, блокирующий ответ макрофагов на γ-интерферон.

При активации в фагоците происходит метаболический взрыв. При этом клетка увеличивается, в ней резко усиливается интенсивность реакций пентозного пути и гликолиза, распадается гликоген. Происходит накопление НАДФН и ГТФ, которые затем будут обеспечивать энергетически синтез АКР и работу элементов цитоскелета. Удельная теплопродукция лейкоцитов возрастает в 4-5 раз. Хотя общее потребление кислорода фагоцитом увеличивается, аэробное окисление не вносит в этот процесс решающего вклада, судя по тому, что цианиды не ингибируют метаболический взрыв и последующие события при фагоцитозе.

При активации на поверхности фагоцита появляются дополнительные молекулы клеточной адгезии и белки первого и второго классов главного комплекса гистосовместимости. Происходит экзоцитоз, в ходе которого гранулоциты подвергаются дегрануляции и освобождают медиаторы воспаления, кумулированные в гранулах. Макрофаги выделяют ИЛ-1, ИЛ-6 и кахексин, а также активаторы фибринолиза. Все фагоциты при активации синтезируют арахидоновые медиаторы воспаления. Активированные фагоциты увеличивают свою цитотоксическую, фагоцитарную и бактерицидную активность. В них начинается выработка активных кислородных радикалов.

Погружениевнешне выглядит как охват объекта фагоцитоза псевдоподиями или накат фагоцита на объект. Это наводит на мысль об общности механизмов хемотаксиса и погружения. Некоторые авторы, особенно изучавшие фагоцитоз крупных частиц и клеток, уподобляют механизм погружения застегиванию молнии. При этом предполагается, что происходит последовательная ассоциация опсонических детерминант объекта с опсониновыми рецепторами фагоцита, таким образом, объект вдвигается в цитоплазму клетки. Поглощение объекта, покрытого иммуноглобулинами, происходит без дополнительных условий. При опсонизации С3b-фрагментом комплемента требуется одновременная активация фибронектинового и ламининового рецептора фагоцита внеклеточными лигандами, как если бы клетка «опиралась» на межклеточное вещество. Активация цитокиновых рецепторов фагоцита также может способствовать погружению объекта, опсонизированного С3b-фрагментом комплемента.

В результате погружения, объект оказывается в цитоплазме фагоцита, полностью окруженный фагосомой, созданной путем инвагинации и замыкания участка клеточной мембраны. Процесс создания фагосомы, видимо, имеет много общего с образованием рецептосом при рецепторном эндоцитозе, когда окаймленные ямки плазматической мембраны, содержащие белок цитоскелета клатрин, замыкаются в опушенные везикулы. При участии микрофиламентов цитоскелета и особых белков-фъюзогенов, фагосома сливается с лизосомами и специфическими гранулами фагоцита (внутренняя дегрануляция), формируя фаголизосому, где и происходит завершающая стадия фагоцитоза. Все эти процессы, как и хемотаксис, зависят от кальция, протеинкиназы С и липидных внутриклеточных посредников.

Деградация объекта фагоцитоза (по классической терминологии – переваривание) служит заключительной стадией фагоцитоза. Главную роль здесь играют частично охарактеризованные выше кислород-зависимые цитотоксические механизмы фагоцитов (галогенизация и перекисное окисление компонентов захваченных объектов с участием гипохлорита, перекиси водорода, синглетного кислорода, гидроксильных радикалов, супероксидного аниона, оксийодидов и оксида азота). Вспомогательную роль выполняют бескислородные механизмы: катионные антибиотические белки, лактоферрин, лизоцим и, возможно, мочевина.

При наследственном дефекте кодируемого Х-хромосомой мембранного компонента НАДФ-зависимой оксидазы (гетеродимера цитохрома b-558), равно как и при аутосомно-рецессивном дефекте цитозольного гетеродимерного компонента этой ферментативной системы, образование супероксида нарушается, и у детей развивается хронический гранулематоз (ХГ) – заболевание, характеризующееся иммунодефицитом, незавершенным фагоцитозом и персистированием бактериальных возбудителей в лейкоцитах. Особенно опасны для таких больных вышеупомянутые каталаза-положительные микробы, провоцирующие у них лимфадениты, гранулёмы, себоррейный дерматит, афтозный стоматит и гингивиты.

Гранулематозная болезнь, как и большинство дефектов фагоцитоза, вызвана сочетанным поражением макрофагов и гранулоцитов. Реже подобные дефекты бывают клеточно-избирательными. Например, дефект макрофагального фагоцитоза иммунных комплексов и опсонизированных ими объектов присутствует при коллагенозах, рассеянном склерозе, герпетиформном дерматите и у родственников больных этими иммунокомплексными заболеваниями. Помимо ХГ, наиболее важными в клинике являются расстройства фагоцитоза, описанные в таблице 9:

Легко заметить, что нарушения функции фагоцитов очень распространены и ответственны за многие случаи снижения иммунологической резистентности у длительно и часто болеющих пациентов, хотя каждая отдельная наследственная аномалия фагоцитов не является частым заболеванием (Таблица 9). Наследственные дефекты фагоцитоза, как правило, аутосомно-рецессивны за исключением вышеописанного варианта ХГ и дефекта глюкоза-6-фосфатдегидрогеназы, сцепленных с Х-хромосомой.

Наиболее часто (1:2000) обнаруживается миелопероксидазный дефицит нейтрофилов. Сам по себе, он не приводит к значительному иммунодефициту, но в сочетании с другими приобретенными расстройствами остальных звеньев функции фагоцитов, например, диабетом, может стать клинически значимым, в основном, из-за развития микозов.

Дефицит лейкоцитарных адгезирующих молекул вызывается дефектами, локализованными в длинном плече хромосомы 21. В нейтрофилах, лимфоцитах и макрофагах нарушается адгезия, агрегация, хемотаксис и активация лейкоцитов лимфокинами, а также снижается опсонизация фактором комплемента С3b. Грибковые и бактериальные поражения кожи, а также слизистых оболочек половых, пищеварительных и дыхательных органов сочетаются с парадоксальным лейкоцитозом, вызванным отсутствием краевого стояния. У новорожденных с этим синдромом плохо заживает пупочная ранка.

Таблица 9

Нарушение фагоцитоза

Нарушенная функция Наследственные дефекты Приобретенные дефекты Лекарственная патология
Адгезия. Агрегация Недостаточность лейкоцитарной адгезии 1 типа (дефект β-цепи интегринов). Недостаточность лейкоцитарной адгезии 2 типа (дефект рецептора селектинов). Новорожденность, сахарный диабет, последствия гемодиализа. Глюкокортикоиды, алкоголь, аспирин, ибупрофен, пироксикам, колхицин.
Пластичность Новорожденность, сахарный диабет, гиперрегенераторные сдвиги влево, лейкозы.
Локомоция Синдром Чедиака-Хигаши (дефект микрофиламентов, дефект антигенсвязывающего белка), синдром Иова, дефицит специфических нейтрофильных гранул. Новорожденность, сахарный диабет, онкологические заболевания. СПИД, тяжелый комбинированный иммунодефицит, коллагенозы, голодание, грипп, герпес, синдромы Дауна и Вискотта-Олдрича, парадонтоз, дефицит α-маннозидазы, энтеропатический акродерматит, сепсис, ожоги. Фенилбутазон, напроксен, колхицин. Глюкокортикоиды, индометацин, интерлсйкин-2.
Деградация объекта Синдром Чедиака-Хигаши хронический гранулёматоз (дефекты НАДФ-оксидазы) дефицит специфических нейтрофильных гранул. Новорожденность, сахарный диабет, сепсис, ожоги, СПИД, спленэктомия, гемоцитопении, лейкоз, голодание. Колхицин, циклофосфан, глюкокортикоиды.
Метаболический взрыв Хронический гранулёматоз, дефицит пируваткиназы дефицит глюкоза-6-фосфатдегидрогеназы. Пеллагра. Колхицин, циклофосфан, глюкокортикоиды.
Миелопероксидазная активность Дефицит миелопероксидазы (дефект миелопероксидазы). Острый миелоидный лейкоз. Колхицин, циклофосфан, глюкокортикоиды, дапсон, сульфоны.

Синдром Иова (по имени библейского страдальца) характеризуется гиперпродукцией IgЕ и нехваткой IgA против различных микробов, протекает с проявлениями атонического дерматита, которые сочетаются с холодными абсцессами, кандидомикозом, рецидивирующими гнойными пневмониями. Отмечаются эозинофильный лейкоците и сниженные хемотаксис и супрессорная активность лимфоцитов. Столь парадоксальный «аллергический иммунодефицит», возможно, связан с дефектом рецепции какого-то из цитокинов. Маркером синдрома служат сколиоз и аномалии лицевого скелета.

При дефекте белков гранул страдают не только специфические гранулы нейтрофилов, но и отсутствует эозинофильное окрашивание гранулоцитов, а также функция α-гранул тромбоцитов. Поэтому расстраивается не только фагоцитоз, но и образование белого тромба, что выражается в рецидивирующих инфекциях кожи и ЛОР-органов, гипоергическом течении воспаления, замедлении заживления ран и геморрагическом синдроме.

Комплексное расстройство фагоцитоза наступает при сахарном диабете, голодании, гиперкортицизме, иммунодефицитах и сепсисе. При диабете это приводит порой к тому, что не леченный больной первоначально обращается не к эндокринологу, а к дерматологу или хирургу по поводу поражений кожи и слизистых, вызванного гноеродной флорой или грибками.

Так как тимические гормоны α-протимозин, тимопоэтин, спленопоэтин, тимусный гуморальный фактор и тимулин стимулируют фагоцитоз, состояния с нарушением функций тимуса, например, синдромы Ди-Джорджи и Незелова, сопровождаются ослаблением фагоцитоза. Дефицит цинка в диете способен нарушить производство цинк-содержащего тимулина, что отрицательно сказывается на иммунитете и фагоцитозе, в частности. У новорожденных также имеется снижение нескольких функций фагоцитов, вследствие чего для них характерен не завершенный фагоцитоз и персистирование возбудителей в фагоцитах.

Выход лейкоцитов в воспаленную ткань (эмиграция лейкоцитов)

Эмиграция (emigratio; от лат. emigrare- выселяться, переселяться) — выход лейкоцитов из сосудов в ткань. Осуществляется путем диапедеза главным образом через стенку венул. Эмиграция лейкоцитов в очаг является ключевым событием патогенеза воспаления. Лейкоциты служат основными эффекторами воспаления. Внеклеточные бактерицидный и литический эффекты лейкоцитарных продуктов и фагоцитоз играют решающую роль в борьбе с флогогеном. Одновременно, оказывая влияние на клетки, сосуды и кровь, компоненты лейкоцитов выступают как важные медиаторы и модуляторы воспаления, в том числе повреждения собственных тканей. Осуществляя раневое очищение, фагоциты и их продукты создают предпосылки для репаративных явлений, в которых также играют определенную роль, стимулируя пролиферацию, дифференцировку и функциональную активность фибробластов и других клеток. Механизм эмиграции состоит в явлении хемотаксиса (И. И. Мечников).

Пусковым моментом активации фагоцитов является воздействие на рецепторы, часто специфические, их клеточных мембран разнообразных хемотаксических агентов, высвобождаемых микроорганизмами или фагоцитами, а также образующихся в ткани в результате действия воспалительного агента или под влиянием самих фагоцитов.

Наиболее важными из хематтрактантов являются фрагменты комплемента,, фибринопептиды и продукты деградации фибрина, калликреин, проактиватор плазминогена, фрагменты коллагена, фибронектин, метаболиты арахидоновой кислоты, цитокины, лимфокины, бактериальные пептиды, продукты распада гранулоцитов.

В результате связывания хематтрактантов с рецепторами и активации ферментов плазматической мембраны в фагоците развивается дыхательный (респираторный, метаолический) взрыв, состоящий в резком повышении потребления кислорода и образовании активных его метаболитов. Этот процесс не имеет отношения к обеспечению фагоцита энергией. Он направлен на дополнительное вооружение фагоцита высокореактивными токсическими веществами для более эффективного уничтожения микроорганизмов. Наряду с дыхательным взрывом в фагоците происходит ряд других изменений. Они включают повышенную выработку особых мембранных гликопротеинов, определяющих адгезивность фагоцита, понижение поверхностного натяжения мембраны и изменение коллоидного состояния участков цитоплазмы (обратимый переход из геля в золь), что создает условия для образования псевдоподий; активацию актиновых и миозиновых микрофиламентов, лежащую в основе миграции; усиленную секрецию с выделением веществ, облегчающих прикрепление лейкоцита к эндотелию, таких, как лактоферрин, катионные белки, фибронектин, интерлейкины.

Лейкоциты выходят из осевого тока крови в плазматический. Этому способствует нарушение реологических свойств крови, замедление кровотока, изменение его характера, в частности уменьшение краевой плазматической зоны. Вследствие возрастания адгезивных свойств не только лейкоцитов, но прежде всего и главным образом эндотелиальных клеток происходит приклеивание лейкоцитов к эндотелию — развивается феноменкраевого стояния лейкоцитов (рис. 29).

Повышение адгезивности эндотелия может быть обусловлено усиленной продукцией им адгезивных гликопротеинов (лектинов) и других веществ, которые включаются в состав фибринной пленки, в норме покрывающей эндотелий со стороны просвета сосуда. Предполагается также, что оно может быть связано с фиксацией на эндотелиальных клетках хематтрактантов, впоследствии взаимодействующих со специфическими рецепторами на лейкоцитах, или же с усилением экспрессии на эндотелиоцитах рецепторов к иммуноглобулинам G и фрагменту комплемента С3b, что приводит к фиксации здесь сначала IgG и С3b, а уже к ним — лейкоцитов, которые также обладают рецепторами к IgG и С3b.

Первоначальный контакт лейкоцитов с эндотелием является весьма непрочным, так что под влиянием кровотока они могут перекатываться по поверхности фибринной пленки, однако контакт быстро упрочивается. Определенное значение здесь придается электростатическим силам. В результате активации отрицательный заряд лейкоцита снижается, что уменьшает силы взаимного отталкивания между ним и эндотелиоцитом, также обладающим отрицательным зарядом. Это, в свою очередь, создает условия для образования между лейкоцитом и эндотелием кальциевых мостиков.

По некоторым данным, Са2+ и другие двухвалентные ионы могут играть ключевую роль в прилипании лейкоцитов.

Занявшие краевое положение лейкоциты выпускают псевдоподии, которые проникают в межэндотелиальные щели, и таким образом “переливаются” через эндотелиальный слой (рис. 30). Повышенные сосудистая проницаемость и ток жидкости из сосуда в ткань играют роль способствующих факторов эмиграции: чем они сильнее, тем легче для лейкоцита прохождение сосудистой стенки. Тем не менее эмиграция — процесс полностью активный. Он требует энергии и осуществляется с усиленным потреблением кислорода и участием ионов кальция и магния, необходимых для контрактильных явлений в лейкоците.

Оказавшись между эндотелиальным слоем и базальной мембраной, лейкоцит выделяет лизосомальные протеиназы, растворяющие ее, а также катионные белки, изменяющие коллоидное состояние базальной мембраны (обратимый переход из геля в золь), что обеспечивает повышенную проходимость ее для лейкоцита. Иммигрировавшие лейкоциты отделяются от наружной поверхности сосудистой стенки и амебоидными движениями направляются к центру очага воспаления (рис. 31), что определяется градиентом концентрации хемотаксических веществ в очаге. Некоторую роль могут играть электрокинетические явления, обусловленные разностью потенциалов между отрицательно заряженным лейкоцитом и положительным зарядом ткани, характеризующейся Н+-гиперионией.

Первоначально среди лейкоцитов экссудата в очаге острого воспаления преобладают гранулоциты, в основном нейтрофилы, а затем — моноциты-макрофаги. Позже в очаге накапливаются лимфоциты.

Поскольку замедление кровотока в отдельных разветвлениях микроциркуляторного русла и краевое стояние лейкоцитов могут развиваться весьма быстро, а мигрирующему нейтрофилу достаточно 3-12 мин, чтобы пройти эндотелий, появление гранулоцитов в очаге может наблюдаться уже к 10-й мин от начала воспаления. Скорость аккумуляции нейтрофилов в очаге является наивысшей в первые два часа, постепенно снижаясь в последующие. Количество их достигает максимума через 4-6 ч, В этот период лейкоциты очага представлены нейтрофилами более чем на 90 %. Гранулоциты фагоцитируют бактерии или иные инородные тела и частицы отмирающих клеточных элементов, параллельно осуществляя внеклеточную поставку ферментов, катионных белков, активных метаболитов кислорода. Одновременно происходит массивное разрушение нейтрофилов, останки которых являются важным стимулом расширения инфильтрации, как нейтрофильной, так и моноцитарной. Как и в норме, большинство гранулоцитов, вышедших в ткань, никогда не возвращается в кровоток.

Моноциты обычно преобладают в очаге острого воспаления спустя 16-24 ч и достигают пика, как правило, на 3-и сут. Однако миграция моноцитов из крови в ткань начинается одновременно с миграцией нейтрофилов. Предполагается, что вначале меньшая, чем у нейтрофилов, скорость аккумуляции моноцитов связана с торможением хемотаксиса моноцитов под влиянием продуктов жизнедеятельности нейтрофилов до определенного времени, необходимого для полной выраженности нейтрофильной реакции и предупреждения ее моноцитарного контроля. В очаге воспаления наблюдаются постепенное превращение иммигрировавших моноцитов в макрофаги и созревание последних, в процессе которого объем цитоплазмы и органелл в ней увеличивается; в частности, повышается количество митохондрий и лизосом, что имеет существенное значение для полноценного выполнения макрофагами их функций в очаге. Возрастает активность пиноцитоза, в цитоплазме увеличивается количество фаголизосом. Повышается число филоподий. Моноциты-макрофаги также являются источником медиаторов воспаления (ферментов, активных метаболитов кислорода, цитокинов), фагоцитируют бактерии, но имеют преимущественное значение в фагоцитозе останков погибших клеток, в частности нейтрофилов. Поэтому понятна зависимость аккумуляции моноцитов от предыдущего выхода нейтрофилов. Так, у кроликов с нейтропенией моноциты не появляются в очаге воспаления до 16 ч, в то время как в естественных условиях воспаления обнаруживаются уже к 4-му ч, а введение в очаг воспаления лейкопеническим животным нейтрофилов восстанавливает обычную аккумуляцию мононуклеаров. Известен также хемотаксический эффект на моноциты лизатов нейтрофилов, обусловленный отчасти катионными белками лизосомальных гранул.

С другой стороны, аккумуляция нейтрофилов во многом зависит от моноцитов. Особенно, видимо, это касается той части нейтрофильной инфильтрации, которая связана с усиленным кроветворением, поскольку последнее инициируется моноцитарно-макрофагальными гемопоэтическими факторами, в частности интерлейкином-1, различными типами так называемых колониестимулирующих факторов — веществ преимущественно белковой природы, ответственных за пролиферацию и дифференцировку в костном мозге кроветворных клеток. В настоящее время выделен ряд хемотаксических пептидов из моноцитов человека для нейтрофилов, которым может принадлежать роль в механизме саморегуляции лейкоцитарной реакции очага воспаления. Однако вопрос о механизмах смены клеточных фаз в очаге воспаления, перехода от развертывания воспалительной реакции к ее разрешению относится к наименее изученным в проблеме воспаления.

Клеточный состав экссудата в большой мере зависит от характера и течения воспалительного процесса, в свою очередь определяемых воспалительным агентом и состоянием реактивности организма. Так, экссудат особенно богат нейтрофилами, если воспаление вызвано гноеродными микробами; при аллергическом воспалении в очаге содержится много эозинофилов. Хронические воспалительные процессы характеризуются незначительным содержанием нейтрофилов, преобладанием моноцитов и лимфоцитов.

Иммигрировавшие лейкоциты совместно с пролиферирующими клетками местного происхождения образуют воспалительный инфильтрат. При этом экссудат с содержащимися в нем клетками пропитывает ткань, распределяясь между элементами воспалительного участка и делая его напряженным и плотным. Инфильтрат наряду с экссудатом обусловливает припухлость и имеет значение в возникновении воспалительной боли.

Миграция лейкоцитов

Основные статьи: Воспаление, Очаг воспаления, Фагоцитоз 1.1. Краевое стояние 1.2. Активация нейтрофилов 1.3. Диапедез лейкоцитов

Вследствие высвобождения доиммунных цитокинов и продукции хемоат­трактантов фагоциты активируются и направляются в очаг инфекции. В спо­койном состоянии нейтрофилы покоятся в пристеночном слое плазмы. При активации они начинают катиться вдоль стенки сосуда по направлению к вос­палительному очагу. При этом поверхностные молекулы адгезии, экспрессия которых в активированных клетках резко возрастает, постоянно «сканируют» эндотелиоциты с целью идентификации зоны функционально активного эндо­телия, соответствующей проекции воспалительного очага. В таких зонах созданы благоприятные условия для экстравазации фагоцита путем диапедеза (трансэндотелиальной миграции) — протискивания между эндотелиоцитами и фибрил­лами базальной мембраны за счет динамического изменения формы клетки. Речь вдет о наличии адгезионных молекул (селектинов, интегринов), останав­ливающих качение нейтрофила, и о повышенной сосудистой проницаемости, способствующей выходу клетки за пределы сосуда в воспалительный очаг.

Миграция лейкоцитов из плазмы крови в очаг пребывания патогена является одним из ключевых процессов при воспалении. В ходе миграции выделяют два этапа:

  • Этап трансэндотелиальной миграции, состоящий в фиксации лейкоци­тов на эндотелии и последующем протискивании между клетками сосуда во внесосудистое пространство.
  • Этап миграции по внеклеточному матриксу внесосудистого простран­ства.

Трансэндотелиальная миграция

На миграцию лейкоцитов через эндо­телий сосудов влияет по крайней мере 3 основных фактора:

  • Величина поверхностного заряда взаимодействующих клеток. Чем ниже такой заряд, тем эффективнее миграция, так как менее выражено элект­ростатическое отталкивание одноименно заряженных клеток
  • Сила гемодинамического смыва в сосуде, которая определяется объем­ной скоростью кровотока. При этом чем больше сила гемодинамическо­го смыва, тем менее эффективна миграция клеток.
  • Экспрессия комплементарных молекул адгезии на мигрирующих лейко­цитах и эндотелии.

Исходя из этих требований, наиболее удобными для миграции являются посткапиллярные венулы, где поверхностный заряд эндотелиоцитов низок, сила гемодинамического смыва невысока, а степень экспрессии адгезионных молекул достаточна.

Рассмотрим механизм миграции лейкоцитов при воспалении на примере наиболее мобильной клетки — нейтрофила. Миграцию нейтрофилов опос­редуют адгезионные молекулы двух типов — селектины (на ранних стадиях) и интегрины (на более поздних). Движущей силой миграции нейтрофилов, как и других лейкоцитов, является продукция клетками очага воспаления хемо­аттрактантов, воздействующих непосредственно на мигрирующие клетки, и доиммунных цитокинов, обеспечивающих повышенную экспрессию адгезион­ных молекул на эндотелии венул очага (формирование зоны так называемого функционально активного эндотелия).

Краевое стояние

Первая стадия трансэндотелиальной миграции нейтрофилов называется краевым стоянием. При этом мигрирующая клетка начинает катиться по по­верхности эндотелиоцитов венулы. Качение обеспечивается взаимодействием селектинов с углеводными молекулами. Нейтрофилы и эндотелиоциты экс­прессируют оба типа адгезионных молекул, поэтому подобное взаимодействие является перекрестным. Каждое связывание селектина с остатками углеводов замедляет скорость качения нейтрофила, поэтому в центре функционально активного эндотелия венулы, где экспрессия адгезионных молекул наиболее высока, нейтрофил останавливается.

Активация нейтрофилов

Второй стадией трансэндотелиальной миграции является активация неподвижного нейтрофила под действием хемоаттрактантов (ЛтВ4, C5b и др. ), хемокинов (ИЛ-8, RANTES и др.), компонен­тов поверхности эндотелиоцитов. Суть активации состоит во включении гене­тической программы миграции нейтрофила.

Диапедез лейкоцитов

Затем происходит собственно акт миграции, которому способствует взаимодействие β-интегринов нейтрофила (CRIII, CR1V, LFA-1 и др.) и адгезионных молекул эндотелия (ICAM-1). Если речь идет об эозинофилах и базофилах, то со стороны эндотелия в качестве адгезионных молекул выступают VCAM-I. Протискивание нейтрофила между эндотелиоцитами завершается продукцией гидролитических ферментов, вызы­вающих локальное повреждение базальной мембраны (стадия лизиса). Материал с сайта http://wiki-med.com

Механизм диапедеза фагоцитов (протискивания между эндотелиоцитами) состоит в следующем. Эндотелиоциты сосудистой стенки фиксированы друг с другом боковыми поверхностями за счет специфических адгезионных мо­лекул (CD31). На цитолемме псевдоподии фагоцита, пытающегося совер­шить диапедез, появляются точно такие же молекулы, т.е. по специфике поверхностных структур он идентифицируется эндотелиоцитами как родст­венная клетка и принимается в состав эндотелиального слоя. Затем цито­плазма и ядро фагоцита перетекают по вмонтированной псевдоподии в экстравазальное пространство. Когда этот процесс завершается, на псевдоподии прекращается экспрессия указанных молекул, силы взаимодействия с сосед­ними эндотелиоцитами ослабевают и фагоцит изымает цитоплазматический отросток из стенки сосуда, перемещаясь в экстравазальное пространство. Дальнейшее перемещение клетки обусловлено как растворимыми хемоат­трактантами, так и мембранными адгезионными молекулами, которые по­являются на клетках поврежденной ткани и указывают путь перемещения мигрирующим фагоцитам.

Этап миграции во внеклеточном матриксе

Покинув сосуд, нейтрофил про­должает миграцию в межклеточном матриксе поврежденной ткани. Для приспособления к новым условиям перемещения изменяется набор поверх­ностных молекул нейтрофила. При этом на его поверхности появляются так называемые очень поздние антигены (англ. very late antigem, VLA). VLA (β-интегрины) обеспечивают прикрепление к элементам межклеточного матрикса (фибронектину, коллагену и др.). Они получили свое название в связи с позд­ним временем экспрессии (в завершающей фазе миграции).

Категории:На этой странице материал по темам:

  • механизмы миграции лекоцитов в ткани

  • мехвнизмы миграции лейкоцитов

  • стадии миграции нейтрофилов

  • что такое диапедез лейкоцитов

  • диапедез механизм

Материал с сайта http://Wiki-Med.com

Реакция лейкоцитов на воспаление — миграция и накопление

Важная функция воспалительной реакции заключается в накоплении в очаге повреждения лейкоцитов и их активации для элиминации повреждающих агентов. Лейкоциты при типичных воспалительных реакциях отвечают за фагоцитоз и представлены ней-трофилами и макрофагами, которые поглощают бактерии и другие микробы и элиминируют некротическую ткань и инородные субстанции. Цена этого защитного потенциала лейкоцитов высока.

При излишней активации лейкоциты, разрушающие бактерии и некротические ткани, могут повредить и нормальную ткань, вызвать ее вторичное повреждение и продлить воспаление.

Участие лейкоцитов в воспалительном процессе осуществляется в следующей последовательности:
(1) выход из кровотока через стенку сосуда в окружающую ткань;
(2) распознавание микробов и некротической ткани;
(3) фагоцитоз и удаление повреждающего агента.

Мобилизация лейкоцитов из просвета сосуда через его стенку в интерстициальную ткань (экстравазация) может быть разделена на несколько последовательных этапов:
— маргинация, роллинг и адгезия лейкоцитов к эндотелию в просвете сосуда. В норме сосудистый эндотелий в неактивном состоянии не адгезирует клетки из кровотока и не препятствует их проходу. При воспалении лейкоциты приклеиваются к эндотелию перед выходом из просвета сосуда через стенку;
— миграция лейкоцитов через слой эндотелия и стенку сосуда;
— миграция лейкоцитов в ткани под действием хемотаксической активации.

Многоступенчатый процесс миграции лейкоцита через стенку сосуда на примере нейтрофила.
Сначала лейкоцит перекатывается по поверхности эндотелия, потом становится активированным и адгезируется к эндотелию, затем проходит сквозь него,
проникает через базальную мембрану и мигрирует в участок повреждения ткани под действием хемоаттрактантов.
На разных этапах этого процесса работают разные основные молекулы:
селектины — при роллинге, хемокины (обычно представленные в связанном виде с протеогликанами) — при активации нейтрофилов для повышения сродства интегринов,
интегрины — для стойкой адгезии, CD31 (РЕСАМ-1) — для трансмиграции. Нейтрофилы экспрессируют низкие уровни L-селектина;
они связываются с эндотелием преимущественно через Р- и Е-селектины.
ICAM-1 — молекула межклеточной адгезии 1; IL — интерлейкин; РЕСАМ-1 — тромбоцитарная молекула адгезии эндотелиальных клеток 1; TNF — фактор некроза опухоли.

а) Маргинация, роллинг и адгезия лейкоцитов к эндотелию в просвете сосуда. При нормальном венозном кровотоке эритроциты движутся в центре потока крови, оттесняя лейкоциты к стенке сосуда. Поскольку уже на ранних стадиях воспаления кровоток замедляется (стаз) и меняются гемодинамические условия (падает напряжение сосудистой стенки), то все большее количество лейкоцитов занимает периферическую позицию в кровотоке вдоль поверхности эндотелия.

Этот процесс перераспределения лейкоцитов называют маргинацией. Далее отдельные лейкоциты или их скопления ненадолго прилипают к эндотелию, отделяются и опять прилипают, как бы перекатываясь по стенке сосуда. Такое перемещение лейкоцитов вдоль сосудистой стенки называют роллингом. В некоторой точке клетка останавливается и в этот момент плотно прилипает к эндотелию (происходит адгезия).

Адгезия лейкоцитов к эндотелиальным клеткам опосредована молекулами адгезии, экспрессию которых на обоих типах клеток усиливают секретирован-ные белки — цитокины. Цитокины секретиру-ются клетками тканей в ответ на появление микробов или других повреждающих агентов, тем самым обеспечивая миграцию лейкоцитов в места присутствия этих агентов.

Начальные роллинговые взаимодействия опосредованы семейством белков селектинов. Существует три типа селектинов: один экспрессируется на лейкоцитах (L-селектин), другой — на эндотелии (Е-селектин), а третий — на тромбоцитах и эндотелии (Р-селектин). Лиганды к селектинам — это сиалированные олигосахариды, связанные с муциноподобными гликопротеиновыми структурами. Экспрессия селектинов и их лигандов регулируется цито-кинами, продуцируемыми в ответ на инфекционное повреждение.

Тканевые макрофаги, тучные клетки и эндотелиальные клетки первыми взаимодействуют с микробами и некротической тканью и реагируют, секретируя несколько цитокинов, в т.ч. TNF, интерлейкин-1 (IL-1) и хемокины (хемотак-сические цитокины, хемоаттрактанты). TNF и IL-1, выявляемые на эндотелиальных клетках посткапиллярных венул, соседствующих с инфекцией, индуцируют скоординированную экспрессию множества молекул адгезии. В течение 1-2 час эндотелиальные клетки начинают экспрессировать Е-селектин и лиганды к L-селектину.

Другие медиаторы, такие как гистамин, тромбин и фактор активации тромбоцитов, описанные далее, стимулируют перераспределение Р-селектина из его обычного внутриклеточного депо в гранулах эндотелиоцитов (названных тельцами Вейбеля-Паладе) на поверхность клетки. Лейкоциты экспрессируют L-селектин, а также лиганды к Е- и Р-селектинам, все они связываются с молекулами на эндотелиальных клетках. Эти низкоаффинные связи легко разрушаются под действием сил кровотока. В результате связанные лейкоциты прилипают, отделяются, опять прилипают, таким образом перемещаясь по поверхности эндотелия.

Слабые роллинговые связи позволяют лейкоцитам замедлить ход и связаться с эндотелием более прочно. Плотность адгезии опосредована семейством лейкоцитарных поверхностных гетеродимерных белков интегринов. TNF и IL-1 индуцируют экспрессию эндотелиальными клетками лигандов к интегринам, в основном к молекулам адгезии сосудистого эндотелия 1 (VCAM-1) (для интегрина VLA-4) и к молекулам межклеточной адгезии 1 (ICAM-1) (для интегринов LFA-1 и Мас-1). В норме лейкоциты экспрессируют интегрины с низкой аффинностью.

Тем временем хемокины, образованные в месте повреждения, попадают в просвет сосуда, прикрепляются к протеогликанам эндотелиальных клеток и концентрируются на поверхности эндотелия. Эти хемокины связываются и активируют роллинговые лейкоциты. В результате лейкоцитарные интегрины VLA-4 и LFA-1 превращаются в высокоаффинные. Комбинация цитокин-индуцированной экспрессии лигандов интегринов на эндотелии и активация лейкоцитарных интегринов приводит к плотному интегрин-опосредованному сцеплению лейкоцитов с эндотелием в очаге воспаления. Лейкоциты перестают перемещаться, их цитоскелет реорганизуется, и они распределяются по эндотелиальной поверхности.

* Нейтрофилы слабо экспрессируют L-селектин, который участвует в адгезии циркулирующих Т-лимфоцитов в венуле с высоким эндотелием лимфатических узлов и лимфоидной ткани слизистых оболочек, а затем в хоуминге лимфоцитов.
ICAM-1 — молекулы межклеточной адгезии 1; lg — иммуноглобулин; VCAM-1 — молекулы адгезии сосудистого эндотелия 1.

б) Миграция лейкоцитов через слой эндотелия и стенку сосуда. Следующий этап в процессе мобилизации лейкоцитов — трансмиграция, или диапедез (миграция лейкоцитов через слой эндотелия). Трансмиграция происходит преимущественно в посткапиллярных венулах. На адгезированные лейкоциты действуют хемокины, стимулируя выход лейкоцитов через межэндотелиальные пространства в соответствии с градиентом концентрации хемокинов и перемещение к месту раны или инфекции, где хемокины были образованы. В процессе миграции лейкоцитов участвуют несколько молекул, располагающихся в межклеточных соединениях между эндотелиальными клетками.

Эти молекулы включают тромбоцитарную молекулу адгезии эндотелиальных клеток 1 (РЕСАМ-1), или CD31, из суперсемейства Ig и несколько молекул адгезии. После прохождения через эндотелий лейкоциты просачиваются через базальную мембрану (возможно, за счет выделения коллагеназ) в окружающую сосуды ткань. Затем клетки мигрируют по градиенту концентрации хемокинов и накапливаются вне сосуда. В соединительной ткани лейкоциты адгезируются к ВКМ за счет способности интегринов и CD44 связываться с белками матрикса. Таким образом лейкоциты попадают в нужное место.

Наиболее яркое доказательство важности лейкоцитарных молекул адгезии — существование генетических дефектов этих молекул, приводящих к интеркур-рентным бактериальным инфекциям, развивающимся вследствие нарушения адгезии лейкоцитов и недостаточной воспалительной реакции. Индивиды с дефицитом адгезии типа I имеют нарушения биосинтеза b2-цепи, общей для интегринов LFA-1 и Мас-1. Дефицит адгезии типа II вызывается отсутствием sialyl-Lewis X (фукозосодержащего лиганда к Е- и Р-селектинам) в результате дефекта фукозилтрансферазы — фермента, присоединяющего части фукозы к белковым каркасам.

Лейкоцитарный инфильтрат при воспалительных реакциях.
Ранняя (нейтрофильная) (А) и поздняя (мононуклеарная)
(Б) фазы образования инфильтрата в зоне демаркационного воспаления при инфаркте миокарда.

в) Миграция лейкоцитов в ткани под действием хемотаксической активации. После выхода из просвета сосуда лейкоциты направляются в очаг повреждения. Этот процесс называют хемотаксисом. Хемоаттрактантами могут быть и экзогенные, и эндогенные субстанции. Самые распространенные экзогенные агенты — продукты бактерий, в т.ч. пептиды, которые имеют в своем составе концевую аминокислоту N-формилметионин и некоторые липиды. Эндогенные хемоаттрактанты включают следующие химические медиаторы воспаления:
(1) цитокины, особенно семейства хемокинов (например, IL-8);
(2) компоненты системы комплемента, особенно С5а;
(3) метаболиты арахидоновой кислоты, в основном лейкотриен В4.

Все эти хемотаксические агенты связываются со специфическими 7-трансмембранными G-белок-связанными рецепторами на поверхности лейкоцитов. Сигналы, передающиеся через эти рецепторы, активируют вторичные мессенджеры, повышающие уровень кальция в цитозоле и, в свою очередь, активирующие малые гуанозинтрифосфатазы семейства Rac/Rho/cdc42 и множество киназ. Эти сигналы вызывают полимеризацию актина, приводящую к увеличению его количества в передней части клетки и оттеснению миозиновых филаментов назад.

Лейкоцит передвигается, образуя свои филоподии, которые тянут заднюю часть клетки в направлении движения, как автомобиль с передним приводом. В конечном итоге лейкоцит мигрирует к агенту воспаления в соответствии с градиентом концентрации локально продуцируемых хемоаттрактантов.

Природа лейкоцитарного инфильтрата варьирует в зависимости от длительности воспаления и типа его агента. При большинстве форм острого воспаления в воспалительном инфильтрате в первые 6-24 час доминируют нейтрофилы, через 24-48 час они заменяются моноцитами. Есть несколько причин для раннего появления нейтрофилов: они самые многочисленные в крови; быстрее реагируют на хемокины и могут более плотно прикрепляться к адгезивным молекулам, таким как Р- и Е-селектины. Нейтрофилы имеют короткий период жизни: после выхода в ткани подвергаются апоптозу и исчезают в течение 24-48 час. Моноциты могут не только дольше сохраняться в тканях, но и делиться посредством митоза, становясь доминирующей популяцией клеток при хроническом воспалении.

Однако есть исключения. При определенных инфекциях, например синегнойной, клеточный инфильтрат представлен преимущественно нейтрофилами, при вирусных инфекциях первыми клетками, появляющимися в воспалительном инфильтрате, могут быть лимфоциты, а при некоторых реакциях гиперчувствительности основными клетками инфильтрата могут быть эозинофилы.

Понимание молекулярных механизмов мобилизации и миграции лейкоцитов привело к открытию большого количества потенциальных мишеней для лечения и контроля воспаления. Вещества, блокирующие TNF (один из основных цитокинов при мобилизации лейкоцитов), являются наиболее эффективными лекарственными средствами, когда-либо разработанными для лечения хронических воспалительных заболеваний. Антагонисты лейкоцитарных интегринов (например, VLA-4), селектинов и хемокинов одобрены для лечения воспалительных заболеваний или находятся в стадии клинических исследований. Предположительно эти антагонисты смогут не только эффективно контролировать воспаление, но и нарушать у пролеченных больных защитные антимикробные механизмы — физиологическую функцию воспалительного ответа.

Кинетика отека и клеточной инфильтрации
Регуляция экспрессии молекул адгезии эндотелиальными клетками и лейкоцитами.
(А) Перераспределение Р-селектина из внутриклеточных запасов на поверхность клетки.
(Б) Повышенная экспрессия на поверхности клетки селектинов и лигандов к интегринам при цитокиновой активации эндотелия.
(В) Повышение сродства интегринов, индуцированное хемокинами. Кластеризация интегринов участвует в повышении их сродства (не показано).
IL — интерлейкин; TNF — фактор некроза опухоли.
(Г) На электронограмме двигающегося лейкоцита в клеточной культуре видны его филоподии (снизу справа) и тянущийся хвост.

— Рекомендуем ознакомиться со следующей статьей «Рецепторы лейкоцитов для выявления микробов и поврежденных тканей»

Оглавление темы «Патофизиология»:

  1. Механизмы накопления пигментов в клетке
  2. Дистрофическая кальцификация аорты как патологическая
  3. Причины, механизмы метастатической кальцификации тканей и органов
  4. Механизмы старения клетки и ее этапы
  5. Определение воспаления и его характеристика
  6. История изучения воспаления
  7. Причины острого воспаления
  8. Изменения сосудов в очаге воспаления: образование транссудата и экссудата
  9. Реакция лейкоцитов на воспаление — миграция и накопление
  10. Рецепторы лейкоцитов для выявления микробов и поврежденных тканей

Стадия экссудации, эмиграции лейкоцитов

Экссудация

66. Экссудация при воспалении возникает из-за повышения:1) проницаемости сосудистой стенки; 2) лимфоотока из очага воспаления; 3) гидростатического давления в очаге воспаления; 4) онкотического давления крови; 5) осмотического давления крови.

67. При воспалении повышение проницаемости сосудистой стенки связано с:1) увеличением гидростатического давления в капиллярах; 2) сокращением эндотелиальных клеток под действием медиаторов воспаления; 3) сдавлением венул клеточным инфильтратом; 4) повышением тонуса вазоконстрикторов; 5) образованием микротромбов.

68. При воспалении повышение проницаемости сосудистой стенки связано с:1) разрушением межэндотелиальных связей венул под влиянием интерлейкина-I; 2) разрушением соединительнотканных волокон вокруг венул; 3) пристеночным стоянием лейкоцитов; 4) торможением ультрапиноцитоза; 5) уменьшением электролитов и белка в тканях.

69. При воспалении ранняя транзиторная фаза повышения проницаемости сосудов вызвана действием продуктов, выделяемых при:1) дегрануляции тучных клеток; 2) активации гранулоцитов; 3) контакте нейтрофилов и эндотелиальных клеток; 4) контакте мононуклеарных клеток и эндотелиальных клеток; 5) повреждении лейкоцитов.

70. При воспалении поздняя фаза повышения проницаемости сосудов вызвана:1) плазменными медиаторами; 2) активацией и повреждением лейкоцитов; 3) продуктами дегрануляции тучных клеток; 4) лейкотриенами; 5) катехоламинами.

71. Экссудация при воспалении возникает из-за:1) понижения коллоидно-осмотического давления в воспаленной ткани; 2) понижения проницаемости капилляров; 3) повышения гидростатического давления в капиллярах; 4) повышения тканевого сопротивления; 5) ускорения лимфооттока.

72. При воспалении повышение гидростатического давления в капиллярах и венулах обусловлено:1) ишемией; 2) артериальной гиперемией; 3) венозной гиперемией; 4) сокращением эндотелиальных клеток венул; 5) прямым повреждением стенок сосудов.

73. Экссудация при воспалении возникает из-за:1) повышения коллоидно-осмотического давления в воспаленной ткани; 2) повышения онкотического давления крови; 3) повышения тканевого сопротивления; 4) понижения проницаемости капилляров; 5) понижения гидростатического давления в капиллярах.


74. Содержание белка в экссудате:1) выше 0,3 г/л; 2) 0,1 — 0,3 г/л; 3) меньше 0,1 г/л; 4) меньше 0, 3 г/л; 5) 0,0 -0,1 г/л.

75. Удельный вес экссудата:1) 1, 000; 2) 1,000 – 1,006; 3) 1,006 – 1,013; 4) 1,015-1,018; 5) 1,018 и выше.

76. Содержание клеток в 1 мм экссудата:1) 3000 и более; 2) 2000 — 3000; 3) 1500-2000; 4) менее 300; 5) менее 100.

80. При тяжелых повреждениях сосудов с разрушением базальной мембраны может возникнуть экссудат:1) серозный; 2) фибринозный; 3) гнойный; 4) геморрагический; 5) хилёзный.

81. Геморрагический экссудат характерен для: 1) дифтерии; 2) ожогов 2 степени; 3) аллергического воспаления; 4) гриппозной пневмонии; 5) вирусного воспаления.

82. Для гнойного экссудата характерно большое содержание:1) фибрина; 2) белка; 3) клеток; 4) липидов; 5) эритроцитов.


84. Клетки гноя представлены:1) лейкоцитами крови в разных стадиях повреждения и распада; 2) разрушенными паренхиматозными клетками воспаленной ткани; 3) разрушенными форменными элементами крови; 4) погибшими макрофагами; 5) погибшими микроорганизмами и их токсинами.

87. Защитно-приспособительное значение экссудации:1) повышение неспецифической резистентности организма; 2) изменение вирулентности микроорганизмов; 3) разведение бактериальных токсинов; 4) нарушение функции органа; 5) ишемическое повреждение тканей.

88. Защитно-приспособительное значение экссудации:1) повышение неспецифической резистентности организма; 2) разрушение токсинов и микробов антителами и ферментами, поступающими из крови; 3) генерализация процесса; 4) нарушение функции органа; 5) ишемическое повреждение тканей.

89. Отрицательное значение экссудации:1) разведение бактериальных токсинов; 2) разрушение токсинов и микробов; 3) локализация процесса; 4) нарушение микроциркуляции органа; 5) повышение местного иммунитета.

Эмиграция лейкоцитов

90. Эмиграцию лейкоцитов в очаг повреждения в основном вызывают медиаторы:1) ранней фазы повышения проницаемости сосудов; 2) поздней фазы повышения проницаемости сосудов; 3) пролиферации; 4) адренергической нервной системы; 5) холинергической системы.

91. Максимальный выход лейкоцитов в очаг воспаления наблюдается в стадию:1) артериальной гиперемии; 2) стаза; 3) венозной гиперемии; 4) ишемии; 5) тромбоэмболии.

92. Эмиграция лейкоцитов начинается со стадии: 1) выхода лейкоцитов через стенку сосудов; 2) краевого стояния лейкоцитов у внутренней стенки сосудов; 3) движения лейкоцитов в очаге воспаления; 4) хемотаксиса; 5) хемокинеза.

93. Краевое стояние лейкоцитов у внутренней стенки сосудов и роллинг (качение) связаны с: 1) замедлением кровотока; 2) образованием псевдоподий; 3) лизисом базальной мембраны протеазами; 4) хемотаксисом; 5) сокращением сократительных элементов лейкоцитов.

94. В патогенезе краевого стояния лейкоцитов у внутренней стенки сосудов в начале происходит активация и экспрессия: 1) Р-селектинов и Е-селектинов на поверхности эндотелия; 2) кадгеринов; 3) интегринов на поверхности лейкоцитов; 4) адгезивных молекул на эндотелии ICAM, VCAM; 5) катионных белков.

95. Адгезивные свойства фагоцитов зависят от:1) поверхностных рецепторов -селектинов, интегринов; 2) иммуноглобулиновых рецепторов; 3) кейлонов; 4) ноцицепторов; 5) циклических нуклеотидов.

96. Рецепторное взаимодействие Р-и Е-селектинов эндотелия происходит с: 1) катионными белками; 2) молекулами фибриногена; 3) L-селектинами лейкоцитов; 4) ионами кальция; 5) лейкотриенами.

97. Экспрессия интегринов на поверхности лейкоцитов сопровождается их взаимодействием с:1) катионными белками; 2) молекулами фибриногена; 3) Е- селектинами эндотелия; 4) Р-селектинами эндотелия; 5) адгезивными молекулами на эндотелии ICAM, VCAM.

98. К факторам, удерживающим лейкоциты у внутренней поверхности эндотелия, относятся:1) ионы хлора; 2) ионы калия; 3) электростатические силы; 4) фактор Джонсона; 5) катионные белки.

100. Выход лейкоцитов через стенку сосудов происходит путём:1) экспрессии L-селектинов на поверхности лейкоцитов; 2) образования псевдоподий; 3) цитопемпсиса; 4) хемотаксиса; 5) фагоцитоза.

101. Выход лейкоцитов через стенку сосудов происходит путём:1) экспрессии Е-селектинов на поверхности эндотелия; 2) экспрессии интегринов на поверхности лейкоцитов; 3) лизиса базальной мембраны протеазами лейкоцитов; 4) цитопемпсиса; 5) хемотаксиса.

102. Первыми в очаг воспаления выходят:1) лимфоциты; 2) моноциты; 3) плазмоциты; 4) нейтрофилы; 5) эозинофилы.

104. Движение лейкоцитов в очаге воспаления осуществляется благодаря: 1) рецепторному взаимодействию Е-селектинов эндотелия с L-селектинами лейкоцитов; 2) хемотаксису; 3) фагоцитозу; 4) экспрессии интегринов на поверхности лейкоцитов; 5) ионам калия.

105. Хемотаксис вызывают:1) катехоламины; 2) продукты бактерий; 3) простагландин Е; 4) тромбоксан А2; 5) ацетилхолин.

106. Хемотаксис вызывают:1) катехоламины; 2) лейкотриены В4; 3) простагландин Е; 4) серотонин; 5) лимфокины.

107. Хемотаксис вызывают:1) катехоламины; 2) компонент комплемента С5а; 3) простациклин; 4) серотонин; 5) лимфокины.

108. Вставьте звено в патогенезе хемотаксиса: хемоаттрактанты ® взаимодействие с рецепторами на поверхности лейкоцитов ® увеличение поступления кальция в цитоплазму ® ? ® активное движение лейкоцита:1) активация микротубулярной системы лейкоцита; 2) активация Е-селектинов на поверхности эндотелия; 3) лизис базальной мембраны сосудов протеазами; 4) опсонизация лейкоцитов; 5) «кислородный взрыв» в лейкоцитах.

109. Ингибиторы хемотаксиса:1) гидрокортизон; 2) адениновые нуклеотиды; 3) фактор Фитцжеральда; 4) фактор Касла; 5) адреналин.

110. К микрофагам относятся:1) моноциты; 2) лимфоциты; 3) нейтрофилы; 4) тучные клетки; 5) тканевые базофилы.

112. В первую стадию фагоцитоза происходит:1) прилипание; 2) узнавание; 3) приближение; 4) адгезия; 5) переваривание.

113. Во вторую стадию фагоцитоза происходит:1) прилипание; 2) узнавание; 3) приближение; 4) хемотаксис; 5) переваривание.

114. В стадию прилипания фагоцитоза рецепторное взаимодействие микроорганизмов с фагоцитами происходит при участии:1) протеаз лейкоцитов; 2) селектинов; 3) интегринов; 4) молекул адгезии ICAM, VCAM; 5) опсонинов.

115. Фагоциты при воспалении более интенсивно поглощают:1) опсонизированные частицы; 2) неопсонизированные частицы; 3) форменные элементы крови; 4) инородные частицы; 5) вирусы.

116. Опсонины сыворотки крови:1) С-реактивный белок; 2) альбумин; 3) лизоцим; 4) пропердин; 5) фибриноген.

118. В третью стадию фагоцитоза происходит:1) дивергенция; 2) поглощение; 3) активный лизис; 4) хемотаксис; 5) переваривание.

119. В стадию поглощения (погружения) фагоцитоза происходит:1) рецепторное взаимодействие микроорганизмов с фагоцитами; 2) лизис базальной мембраны протеазами; 3) сокращение сократительных элементов лейкоцитов; 4) формирование фагосомы; 5) формирование фаголизосомы.

120. В четвертую стадию фагоцитоза происходит:1) эмиграция лейкоцитов; 2) прилипание фагоцитов к микроорганизмам; 3) переваривание; 4) поглощение микроорганизмов лейкоцитами; 5) адгезия.

121. Киллинг микроорганизмов при фагоцитозе происходит в:1) кислой среде фаголизосомы; 2) щелочной среде фаголизосомы; 3) нейтральной среде фаголизосомы; 4) щелочной среде фагосомы; 5) кислой среды фагосомы.

122. Кислороднезависимый путь киллинга микроорганизмов при фагоцитозе связан с действием:1) гидролитических ферментов; 2) активных форм кислорода; 3) перекисных соединений; 4) свободно-радикальных соединений; 5) антиоксидантов.

123. Бактерицидными веществами гранул лейкоцитов являются: 1) активные формы кислорода; 2) оксид азота; 3) ионы водорода; 4) лизоцим; 5) компоненты комплемента С5а.

124. Кислородзависимый путь киллинга микроорганизмов при фагоцитозе связан с действием:1) гидролитических ферментов; 2) активных форм кислорода и перекиси водорода; 3) катионных белков; 4) лизосомальных ферментов; 5) антиоксидантов.

Стадия пролиферации

125. В стадию пролиферации происходит: 1) повреждение клеток; 2) эмиграция лейкоцитов; 3) образование медиаторов и модуляторов воспаления; 4) размножение клеточных элементов; 5) фагоцитоз.

127. Зрелые фибробласты синтезируют: 1) соматомедин; 2) кортизол; 3) коллаген; 4) протеогликаны; 5) кейлоны.

128. Главным составным элементом рубцовой ткани является:1) фибрин; 2) коллаген; 3) эластин; 4) миозин; 5) актин.

129. В стадию пролиферации воспаления неоангиогенез (образование новых кровеносных и лимфатических сосудов) зависит от миграции в очаг воспаления:1) фибробластов; 2) эндотелиоцитов; 3) кейлонов; 4) кортизола; 5) альдостерона.

130. Стимуляторы пролиферации: 1) фактор некроза опухолей; 2) адгезивные молекулы кадгерины; 3) эпидермальный фактор роста; 5) интерферон-γ.

131. Стимуляторы пролиферации: 1) фактор некроза опухолей; 2) адгезивные молекулы кадгерины; 3) фактор роста фибробластов; 5) интерферон-γ.

132. Ингибиторы пролиферации: 1) эпидермальный фактор роста; 2) трансформированный фактор роста-a; 3) фактор некроза опухолей; 4) фактор роста фибробластов; 5) интерлейкин-I.

133. Ингибиторы пролиферации:1) адреналин; 2) компонент комплемента С5а; 3) кейлоны; 4) интегрины; 5) селектины.

134. В стадию пролиферации устранение свободных радикалов внутри клеток происходит под влиянием:1) церуллоплазмина; 2) супероксиддисмутазы; 3) перекиси водорода; 4) моноаминооксидазы; 5) компонента комплемента С3в.

135. Избыточная пролиферация опасна:1) образованием воспалительного отека; 2) формированием рубца в жизненно важных органах; 3) незавершенным фагоцитозом; 4) усиленной эмиграцией лейкоцитов; 5) интернализацией медиаторов воспаления.

Признаки воспаления

137. Краснота при воспалении связана с:1) явлениями экссудации; 2) развитием артериальной гиперемии; 3) раздражением нервных окончаний брадикинином; 4) накоплением калия в очаге воспаления; 5) синтезом белков острой фазы.

138. Жар при воспалении связан с: 1) усилением обмена веществ; 2) развитием венозной гиперемии; 3) раздражением нервных окончаний брадикинином; 4) накоплением ионов калия в очаге воспаления; 5) синтезом белков острой фазы.

139. Припухлость при воспалении связана с: 1) усилением обмена веществ в очаге воспаления; 2) экссудацией; 3) раздражением нервных окончаний брадикинином; 4) накоплением ионов водорода в очаге воспаления; 5) синтезом белков острой фазы.

140. Боль при воспалении связана с:1) нарушением кровообращения; 2) повышением обмена веществ; 3) раздражением чувствительных нервов отечной жидкостью и продуктами нарушенного обмена; 4) повышением проницаемости сосудистой стенки; 5) действием белков острой фазы.

141. Ощущение боли в очаге воспаления вызывает:1) брадикинин; 2) адреналин; 3) лейкокинины; 4) лимфокины; 5) лейкотриены.

142. Нарушение функции органа при воспалении связано с:1) усилением обмена веществ в очаге воспаления; 2) развитием артериальной гиперемии; 3)повреждением клеток; 4) накоплением ионов водорода и калия в очаге воспаления; 5) синтезом белков острой фазы.

144. Ответ острой фазы при воспалении проявляется: 1) симптомами интоксикации, ускорением СОЭ, лейкоцитозом, лихорадкой; 2) отёчностью воспалённой ткани; 3) краснотой и припухлостью в очаге воспаления; 4) локальным повышением температуры; 5) болью.

Принципы лечения воспаления

146. Применение антибиотиков при воспалении, вызванном бактериями, относится к:1) этиологическому принципу терапии; 2) патогенетическому принципу терапии; 3) симптоматическому принципу терапии; 4) заместительному принципу терапии; 5) саногенетическому принципу терапии.

147. Удаление желчных камней при воспалении желчного пузыря относится к:1) патогенетическому лечению; 2) этиологическому лечению; 3) заместительной терапии; 4) консервативной терапии; 5) паллиативной терапии.

148. При воспалении применение нестероидных противовоспалительных препаратов является примером:1) этиологи-ческого принципа терапии; 2) патогенетического принципа терапии; 3) симптоматического принципа терапии; 4) заместительного принципа терапии; 5) саногенетического принципа терапии.

151. Провоспалительное действие минералокортикоидов связано с: 1) снижением образования серотонина; 2) снижением образования гистамина; 3) ограничением деления клеток; 4) повышением проницаемости стенки сосудов; 5) инактивацией лизосомальных ферментов.

152. При воспалении применение обезболивающих средств относится к:1) этиологическому лечению; 2) патогенетическому лечению; 3) симптоматическому лечению; 4) радикальному лечению; 5) саногенетическому лечению.

153. При воспалении применение жаропонижающих средств относится к:1) этиологическому лечению; 2) патогенетическому лечению; 3) симптоматическому лечению; 4) радикальному лечению; 5) саногенетическому лечению.

154. Пролиферация подавляется при использовании: 1) минералокортикоидов; 2) глюкокортикоидов; 3) антиоксидантов; 4) блокаторов кальциевых каналов; 5) антибиотиков.

Тема № 9: Лихорадка

Цель занятия:сформировать современные представления об этиологии и патогенезе лихорадки, ее патофизиологической сущности и биологической значимости для организма.

Задачи обучения:

1. Изучить причины возникновения лихорадки и виды пирогенных веществ.

2. Знать механизмы изменения температуры тела на различных стадиях лихорадки.

3. Уметь определять стадии лихорадки и типы лихорадочных кривых.

4. Усвоить материал, касающийся особенностей обмена веществ и изменений функций органов и систем при лихорадке.

5. Знать отличия лихорадки от гипертермии.

6. Иметь представления о патофизиологических принципах жаропонижающей терапии.

Основные вопросы темы:

1. Этиология лихорадки. Пирогенные вещества, их химическая природа и источники образования при инфекционном процессе, асептическом повреждении тканей, иммунных реакциях. Экзогенные и эндогенные пирогенны, первичные и вторичные пирогены. Лейкоцитарные пирогены, интерлейкин-1.

2. Механизмы действия пирогенов. Значение термочувствительных зон гипоталамуса и периферических рецепторов в перестройке терморегуляции при лихорадке.

3. Стадии лихорадки. Терморегуляция на разных стадиях лихорадки.

4. Типы лихорадочных реакций.

5. Зависимость развития лихорадки от свойств пирогенного фактора и реактивности организма. Oособенности лихорадочной реакции в раннем онтогенезе.

6. Участие нервной, эндокринной и иммунной систем в развитии лихорадки.

7. Изменения обмена веществ и функций физиологических систем при лихорадке.

8. Биологическое значение лихорадочной реакции.

9. Отличие лихорадки от экзогенного перегревания и других видов гипертермии.

10. Патофизиологические принципы жаропонижающей терапии. Понятие о пиротерапии.

Методы обучения и преподавания:

1. Обсуждение темы занятия.

2. Тестирование.

3. Работа с температурными листами.

4. Реферат «Злокачественная гипертермия».

5. Заполнение таблицы: «Отличие лихорадки от гипертермии».

Литература

На русском языке

основная:

1. Патологическая физиология. Учебник //Под ред. Адо А.Д., Новицкого В.В. – Томск: Изд-во Том. ун-та, 1994 — С.178 — 188.

2. Патологическая физиология. Учебник //Под ред. Зайко Н.Н. — Элиста, 1994 — С. 309 — 321.

дополнительная:

1. Гончарик И.И. Лихорадка – М.: Вышэйша школа, 1999 – 176 с.

2. Патологическая физиология. Учебник. // Под ред. Адо А.Д. – М., Триада-Х, 2000 – С. 202 — 210.

3. Литвицкий П.Ф. Патофизиология. Учебник в 2 томах. Том 1.- М.:ГЭОТАР-МЕД, 2006 – С.201 — 244.

4. Патофизиология //Под ред.Новицкого В.В., Гольдберга Е.Д. – Томск: Изд-во Том.ун-та,2006 — С.235-244.

5. Воробьев П.А. Лихорадка.- М.:Ньюдиамед, 2008- 80 с.

Контроль: вопросы, тестовые задания, температурные листы, тематический диктант.

Глоссарий

Просмотров 427

Эта страница нарушает авторские права

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *