Уравнение притока жидкости к скважине

Уравнения притока жидкости к скважине.

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. При постоянной толщине пласта и открытом забое скважины жидкость движется к забою по радиально-сходящимся направлениям. В таком случае говорят о плоскорадиальной форме потока.

Если скважина достаточно продолжительно работает при постоянном забойном давлении, то скорость фильтрации и давление во всех точках пласта перестает изменяться во времени и поток является установившемся.

Для установившегося плоскорадиального потока однородной жидкости дебит скважины можно определить по формуле:

где,

Q – дебит скважины , , и.т.п. (объем жидкости, поступающий на забой скважины в единицу времени);

k – проницаемость пласта (микрометр) 1 мкм2 = 1 Д = 10 -12 м2;

h – толщина пласта ;

pк – пластовое давление ;

pз – забойное давление в скважине ;

μ – вязкость жидкости ;

Rк – радиус контура питания ;

Rс – радиус контура скважины .

Формула, называемая формулой Дюпюи, широко используется для расчета дебита гидродинамически совершенных скважин.

К гидродинамически совершенным скважинам (ГДС) относят скважины с открытым забоем, вскрывшие пласты на всю толщину (рис. а).

Если скважина имеет открытый забой, но вскрыла пласт не на всю толщину, то ее называют гидродинамически несовершенной по степени вскрытия (рис. б).

Скважины, вскрывшие пласт на всю толщину, но соединяющиеся с пластом посредством перфорации, являются гидродинамически несовершенными по характеру вскрытия (рис. в) .

Есть скважины и с двойным видом несовершенства – как по степени, так и по характеру вскрытия (рис. г).

Вблизи ствола гидродинамический несовершенной скважины происходит искажение плоскорадиальной формы потока и возникают дополнительные фильтрационные сопротивления потоку жидкости.

При расчете дебита скважин их гидродинамическое несовершенство учитывается введением в формулу Дюпюи коэффициента дополнительных фильтрационных сопротивлений С.

Величина коэффициента дополнительных фильтрационных сопротивлений зависит от степени вскрытия пласта, плотности перфорации и диаметра перфорационных каналов. Обычно ее определяют, используя графики И.В. Щурова.

⇐ ПредыдущаяСтр 4 из 4

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. При постоянной толщине пласта и открытом забое скважины жидкость движется к забою по радиально-сходящимся направлениям. В таком случае говорят о плоскорадиальной форме потока.

Если скважина достаточно продолжительно работает при постоянном забойном давлении, то скорость фильтрации и давление во всех точках пласта перестает изменяться во времени и поток является установившемся.

Для установившегося плоскорадиального потока однородной жидкости дебит скважины можно определить по формуле:

где,

Q – дебит скважины , , и.т.п. (объем жидкости, поступающий на забой скважины в единицу времени);

k – проницаемость пласта (микрометр) 1 мкм2 = 1 Д = 10 -12 м2;

h – толщина пласта ;

pк – пластовое давление ;

pз – забойное давление в скважине ;

μ – вязкость жидкости ;

Rк – радиус контура питания ;

rс – радиус контура скважины .

Формула, называемая формулой Дюпюи, широко используется для расчета дебита гидродинамически совершенных скважин.

К гидродинамически совершенным скважинам (ГДС) относят скважины с открытым забоем, вскрывшие пласты на всю толщину (рис. а).

Если скважина имеет открытый забой, но вскрыла пласт не на всю толщину, то ее называют гидродинамически несовершенной по степени вскрытия (рис. б).

Скважины, вскрывшие пласт на всю толщину, но соединяющиеся с пластом посредством перфорации, являются гидродинамически несовершенными по характеру вскрытия (рис. в) .

Есть скважины и с двойным видом несовершенства – как по степени, так и по характеру вскрытия (рис. г).


Вблизи ствола гидродинамический несовершенной скважины происходит искажение плоскорадиальной формы потока и возникают дополнительные фильтрационные сопротивления потоку жидкости.

При расчете дебита скважин их гидродинамическое несовершенство учитывается введением в формулу Дюпюи коэффициента дополнительных фильтрационных сопротивлений С.

Величина коэффициента дополнительных фильтрационных сопротивлений зависит от степени вскрытия пласта, плотности перфорации и диаметра перфорационных каналов. Обычно ее определяют, используя графики И.В. Щурова.

Основные понятия о разработке нефтяных и газовых месторождений. Пластовая энергия и силы, действующие в залежи. Природные режимы работы нефтяных и газовых залежей.

Одной из главных целей разработки месторождения является извлечение максимального количества нефти из недр.

Разработка нефтяных и газовых месторождений – это комплекс мероприятий, направленных на обеспечение притока нефти и газа из залежи к забою скважин, предусматривающих с этой целью определенный порядок размещения скважин на площади, очередность их бурения и ввода в эксплуатацию, установление и поддержание определенного режима их работы.

Под режимом работы нефтяных и газовых залежей понимают характер проявления движущих сил, обеспечивающих продвижение нефти в пластах к забоям эксплуатационных скважин.

Залегающие в пластах нефть и газ находятся под действием сил, совокупность которых обусловливает движение нефти, газа и воды в пластах при их разработке, а также характер и интенсивность этого движения.

Силы, действующие в пласте, можно разделить на две группы: силы движения и силы сопротивления, противодействующие движению жидкостей и газа и удерживающие нефть в пластах.

К силам, обусловливающим движение нефти, газа и воды в пластах, относятся следующие:

  • силы, вызываемые напором пластовых контурных вод;
  • силы, вызываемые напором свободного газа, заключенного в газовой шапке;
  • силы, вызываемые расширением сжатого газа, растворенного в нефти;
  • силы, проявляющиеся в результате упругости пластовых водонапорных систем, т.е. упругости жидкости и собственно пород пластов;
  • сила тяжести нефти.

В процессе движения нефти и газа в пласте чаще всего действуют различные виды энергии одновременно. Так, всегда проявляются упругость пород и жидкостей и сила тяжести. Однако в зависимости от геологических условий и условий эксплуатации месторождения превалирует энергия того или иного вида.

К силам сопротивления движения нефти в пласте относятся:

  • внутреннее трение жидкости и газа, связанное с преодолением их вязкости;
  • трение нефти, воды или газа о стенки поровых каналов нефтегазосодержащей породы;
  • межфазное трение при относительном движении жидкости и газа по пласту;
  • капиллярные и молекулярно-поверхностные силы, удерживающие нефть в пласте благодаря смачиванию ею стенок поровых каналов.

Гидравлическое сопротивление движению жидкости и газа по пласту зависит прежде всего от вязкости движущихся жидкостей и газа и от скорости потока. Чем выше скорость потока и выше вязкость, тем больше силы сопротивления.

Виды режимов работы нефтяных и газовых залежей:

— водонапорный (жестководонапорный) режим (рис. а) источником энергии является напор краевых (или подошвенных) вод. Ее запасы постоянно пополняются за счет атмосферных осадков и источников поверхностных водоемов. Отличительной особенностью этого режима является то, что поступающая в пласт вода полностью замещает отбираемую нефть. Контур нефтеносности при этом непрерывно перемещается и сокращается.

Эксплуатация нефтяных скважин прекращается, когда краевые воды достигают забоя тех из них, которые находятся в наиболее высоких частях пласта, и вместо нефти начинает добываться только вода.

При водонапорном режиме давление в пласте настолько велико, что скважины фонтанируют. Но отбор нефти и газа не следует производить слишком быстро, поскольку иначе темп притока воды будет отставать от темпа отбора нефти и давление в пласте будет падать, фонтанирование прекратиться. Коэффициент нефтеотдачи пласта при данном режиме – 0,5…0,8

Коэффициент нефтеотдачи пласта — это доля извлеченной из пласта нефти от ее первоначальных запасов.

— газонапорный режим (или режим газовой шапки)(рис. б) источником энергии для вытеснения нефти является давление газа, сжатого в газовой шапке. Газ, действуя на поверхность газонефтяного контакта, создает давление в нефти, заполняющей поры продуктивного пласта. Чем больше размер газовой шапки, тем дольше снижается давление в ней. Коэффициент нефтеотдачи пласта – 0,5…0,6.

— режим растворенного газа (газовый) (рис. в) основным источником пластовой энергии является давление газа, растворенного в нефти. По мере понижения пластового давления газ из растворенного состояния переходит в свободное. Расширяясь пузырьки газа выталкивают нефть к забоям скважин. Коэффициент нефтеотдачи – самый низкий 0,2…0,4. Причина этого в том, что запас энергии газа часто полностью истощается намного раньше, чем успевают отобрать значительные объемы нефти.

— упруговодонапорный (упругий) режим основным источником пластовой энергии служат упругие силы воды, нефти и самих пород, сжатых в недрах под действием горного давления. Коэффициент нефтеотдачи пласта – может достигать 0,8.

— гравитационный режим (рис. г) проявляется тогда, когда давление в пласте упало до минимума, напор контурных вод отсутствует, газовая энергия полностью истощена. При этом режиме нефть стекает в скважину под действием силы тяжести, а оттуда она откачивается механизированным способом. Коэффициент нефтеотдачи пласта – 0,1 – 0,2.

— смешанный режим — если в нефтяной залежи одновременно действуют различные движущие силы.

При разработке газовых месторождений гравитационный режим и режим растворенного газа отсутствуют.

Естественная пластовая энергия в большинстве случаев не обеспечивает высоких темпов и достаточной полноты отбора нефти из залежи. Это связано с тем, что ее извлечению из пласта препятствует достаточно много факторов, в частности, силы трения, силы поверхностного натяжения и капиллярные силы.


⇐ Предыдущая1234

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

МАТЕРИКОВАЯ ДОБЫЧА НЕФТИ

ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ

Классификация и назначение скважин Конструкция скважин Влияние факторов на конструкцию скважин Физические процессы в призабойной зоне
Приток жидкости в скважину Гидродинамическое совершенство скважин Типовые конструкции забоев скважин Основы вторичного вскрытия пласта
Взрывные методы перфорации Гидропескоструйная перфорация

Приток жидкости в скважину в круговом пласте

Рассмотрим задачу притока жидкости в скважину в круговом пласте.

Для решения задачи введем следующие допущения:

  1. Пласт круговой, в центре которого расположена единственная совершенная скважина.
  2. Пласт однородный и изотропный постоянной толщины.
  3. Процесс течения флюида изотермический (μ = const).
  4. Движение жидкости плоско-радиальное и соответствует закону Дарси.
  5. В процессе фильтрации отсутствуют любые физические и химические реакции.

Запишем уравнение Дарси:

Выделим на расстоянии r от оси скважины элемент пласта толщиной dr. Перепад давлений на этом элементе обозначим через dP. Поверхность фильтрации для выделенного элемента такова:

Запишем уравнение Дарси для рассматриваемой схемы:

Пределами интегрирования для являются:

  • по Р: от Рк до Рзаб;
  • по r: от Rк до rc.

Таким образом, имеем уравнение Дюпюи и описывающее приток жидкости в скважину для рассмотренной схемы при принятых допущениях:

Распределение давления в пласте

Распределение давления в пласте вокруг работающей скважины является логарифмическим, что представлено на рисунке.

Давление на контуре питания Рк является пластовым статическим давлением Рпл.ст , в дальнейшем просто Рпл (Рпл.ст — статическое пластовое давление — давление, которое существует в системе до момента отбора продукции, т.е. когда Q = 0). Давление вокруг работающей скважины в любой точке пласта (между давлением на забое скважины и давлением на контуре питания) называется динамическим пластовым давлением Р. Динамическое пластовое давление на стенке скважины будем называть забойным давлением Рзаб.

Разность между статическим и динамическим пластовыми давлениями называется депрессией ΔР:

Если линию распределения давления повернуть вокруг оси скважины, получится так называемая воронку депрессии. Депрессия (потери энергии при движении продукции от контура питания до стенки скважины) существенно возрастает на определенном расстоянии от стенки скважины.

Под призабойной зоной скважины будем понимать зону, прилегающую к стенкам скважины, в которой существенно возрастают фильтрационные сопротивления движению продукции. До настоящего времени не существует никаких рекомендаций по численному определению радиуса этой зоны, что в значительной степени осложняет оценку эффективности различных методов искусственного воздействия на призабойные зоны скважин и сравнение их между собой.

Рассмотрим некоторые возможности численной оценки размеров ПЗС.

Первая возможность базируется на аппроксимации ветвей логарифмической зависимости Р = f(r) прямыми линиями 1 и 2, которые пересекаются в точке А. Эта точка и дает размеры (радиус) призабойной зоны скважины — rпзс. Данный прием не является единственно возможным. Численная оценка размеров призабойной зоны может быть определена и по-другому.

Например, можно разбить суммарные потери энергии при движении продукции от контура питания до стенки скважины поровну, т.е. чтобы площади S1 и S2 были равны. Граница этих площадей и будет численно определять радиус ПЗС. Совершенно очевидно, что для оценки размеров ПЗС можно предложить и другие методы.

Важно: какой бы метод оценки размеров ПЗС не использовался, если возникает необходимость сравнения результатов, зависящих от размеров ПЗС, при этом сравнении необходимо в обоих случаях использовать один и тот же метод расчета размеров (радиуса) ПЗС.

Классификация и назначение скважин Конструкция скважин Влияние факторов на конструкцию скважин Физические процессы в призабойной зоне
Приток жидкости в скважину Гидродинамическое совершенство скважин Типовые конструкции забоев скважин Основы вторичного вскрытия пласта
Взрывные методы перфорации Гидропескоструйная перфорация

Уравнения притока жидкости в скважине. Формула Дюпюи

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. Так, как движение жидкости в пласте происходит с весьма малыми скоростями, то оно подчиняется линейному за­кону фильтрации — закону Дарси.

Для установившегося плоскорадиального потока однородной жидкости по закону Дарси дебит скважины можно определить по формуле

где Q — дебит скважины (объем жидкости, поступающей на забой скважины в единицу времени); k — проницаемость пла­ста; h — толщина пласта; Рпл — пластовое давление; Рз — забой­ное давление в скважине; — вязкость жидкости; RK и rс — радиусы контура питания и скважины, соответственно.

а. Формула (4.8), называемая формулой Дюпюи, широко ис­пользуется для расчета дебита гидродинамически совершенных скважин (скважины с открытым забоем, вскрывшие пласты на всю толщину (а)).

б. Гидродинамически несовершенная по степени вскрытия -Если скважина имеет открытый забой, но вскрыла пласт не на всю толщину (б).

в. Гидродинамически не­совершенная по характеру вскрытия — Скважина, вскрывшая пласт на всю толщину, но соединяющиеся с пластом посредст­вом перфорации ( в).

г. Есть скважины и с двой­ным видом несовершенства — как по степени, так и по харак­теру вскрытия (г).

Вблизи ствола гидродинамической несовершенной скважины происходит искажение плоскорадиальной формы потока и воз­никают дополнительные фильтрационные сопротивления потоку жидкости.

Условие притока. Уравнение притока жидкости к скважине.

Для вызова притока необходимо выполнение условия Pз<Рпл, т.е создание депрессии давления на пласт Р=Рпл-Рз, тк.к забойное давление можно представить как гидростатическое давление столба жидкости в скважине, то условие вызова притока можно записать Рпл>ρgh

Для установившегося плоскорадиального потока однородной жидкости можно определить по формуле Дарси:

Q =

где Q — дебит скважины; k — проницаемость пласта; h — толщина пласта; Рпл — пластовое давление; Рз — забойное давление в скважине; μ — вязкость жидкости; Rк и rс — радиусы контура питания и скважины, соответственно.

Методы вызова притока.

Вызов притока — технологический процесс снижения противодавления на забое простаивающей скважины, ликвидации репрессии на пласт и создания депрессии, под действием которой начинается течение флюида из пласта в скважину.

Перед освоением скважину оборудуют в соответствии с её назначением, способом эксплуатации и методом вызова притока. Выбор метода вызова притока зависит от назначения скважины, её способа эксплуатации, пластового давления, глубины и расположения скважины на структуре, степени устойчивости коллектора и др.

В промысловой практике нашли применение следующие три основные метода вызова притока (пуска в работу): замена жидкости, аэрация и продавка.

Метод замены жидкости

Последовательная замена жидкости с большей плотностью на жидкость с меньшей плотностью осуществляется промывкой скважины обычно по схеме: буровой раствор с большой плотностью- буровой раствор с меньшей плотностью – вода – нефть – газоконденсат.

Компрессорный метод. Аэрация (аэрирование, газирование) жидкости осуществляется аналогично, но в поток жидкости (воды) постепенно вводят газ, увеличивая его расход и уменьшая расход жидкости.

Продавка (вытеснение) жидкости сжатым газом. Этот метод пуска скважин называют ещё газлифтным или компрессорным. В процессе пуска скважин быстро создается депрессия, поэтому данный метод не применим при наличии рыхлых и неустойчивых коллекторов, подошвенной воды, верхнего газа.

Виды несовершенства скважин.

Различают три вида несовершенства скважин:

1) несовершенная по степени вскрытия- это скважина с открытым забоем, вскрывшая пласт не на всю мощь, а только на определённую глубину.

2)несовершенная по характеру вскрытия- это скважина вскрывшая пласт на всю его мощность, но сообщающаяся с пластом только через отверстия в коллоне труб (перфорация), в цементном кольце.

3) С двойным не совершенством.

Баланс энергии в скважине. Виды фонтанирования.

Подъём жидкости на поверхность происходит за счёт пластовой энергии либо за счёт пластовой и искусственной.

Энергия расходуется в стволе скважины: на преодоление силы тяжести гидростатического столба жидкости с учётом противодавления на устье; на преодоление сил трения; местные давления и на преодоление инерционных сил;

Баланс энергии записывается в следующем виде: Eпл + Eи = Eст + Eтр + Eм + Eин

Когда скважина перестаёт фонтанировать, её переводят на другой метод эксплуатации – газлифтный, насосный.

При механизированых способах и при газлифте нефть поднимается только на определённую высоту, которая меньше глубины скважины.

Для подъёма жидкости до устья при данных способах в скважину вводят дополнительную энергию:при газлифте – энергия сжатого газа; при насосном – энергия придаваемая насосом.

По мере подъёма жидкости по стволу скважины снижается давление, выделяется растворимый газ и образуется газожидкостная смесь (ГЖС). Газ выполняет работу по подъёму жидкости в трубах.

Выразим уравнение баланса энергии в скважине через силы гидродинамического давления. Vсм(Р1-Р2) = Vсм∆Рст + Vсм∆Ртр + Vсм∆Pин

Разделив уравнение на Vсм, получим баланс давлений в скважине: Р1-Р2 = ∆Рст + ∆Ртр + ∆Рин

где Р1 – забойное, а Р2 – устьевое давления.

Виды фонтанирования:1) Артезианское фонтанирование,2) Газлифтное с выделением газа в стволе.3) Газлифтное с выделением газа в пласте.

Приток жидкости к скважинам

При эксплуатации скважины движение пластовой жидкости осуществляется в трех системах пласт-скважина-коллектор, которые действуют независимо друг друга, при этом взаимосвязаны между собой.

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. Разность между пластовым и забойным давлением называется депрессией на пласт.

(3.15)

Так как движение жидкости в пласте происходит с весьма малыми скоростями, то оно подчиняется линейному закону фильтрации — закону Дарси. При постоянной толщине пласта и открытом забое скважины жидкость движется к забою по радиально-сходящимся направлениям. В таком случае говорят о плоскорадиальной форме потока. Если скважина достаточно продолжительно работает при постоянном забойном давлении, то скорость фильтрации и давление во всех точках пласта перестает изменяться во времени и поток является установившимся.

Рис. 3.9. Схема добычи нефти из пласта

Рис. 3.10. Схема плоскорадиального потока в пласте: а) горизонтальное сечение б) вертикальное сечение

Рис. 3.11. График распределения давления в плоскорадиальном фильтрационном потоке

Для установившегося плоскорадиального потока однородной жидкости по закону Дарси дебит скважины можно определить по формуле:

(3.16)

где Q — дебит скважины (объем жидкости, поступающей на забой скважины в единицу времени); k — проницаемость пласта; h -толщина пласта; Рпл — пластовое давление; Рз -забойное давление в скважине; — вязкость жидкости; R — радиус контура питания скважины (равен половине расстояния между двумя соседними скважинами); гс — радиус скважины.

Анализ формулы (3.16) показывает, что на дебит скважины влияют:

1) проницаемость пласта — чем она больше, тем выше дебит

скважины;

толщина пласта — чем она больше, тем выше дебит скважины;

депрессия на пласт — чем больше депрессия, тем выше дебит скважины;

вязкость жидкости — чем она больше, тем ниже дебит скважины;

отношение радиуса контура питания к радиусу скважины — чем больше это отношение, тем выше дебит скважины.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *