Параллельное соединение конденсатора и катушки

Для рассмотрения параллельного соединения катушки и конденсатора представим их на схеме активными и реактивными проводимостями (рис. 14.11, а).

На схеме рис. 14.1.1, б те же катушки и конденсатор представлены активными и реактивными сопротивлениями. Первая схема имеет некоторое преимущество, так как в ней все элементы соединены параллельно, а в другой они соединены смешанно.

Считая известными параметры катушки G1, BL и конденсатора G2, BC, а также напряжение u = Umsinωt, определим токи в цепи и ее мощность.

Векторная диаграмма цепи. Полная проводимость цепи

Согласно первому закону Кирхгофа, мгновенная величина общего тока равна сумме мгновенных токов отдельных ветвей:

Имея в виду несовпадение по фазе активных и реактивных токов, величину общего тока найдем векторным сложением:

Для построения векторной диаграммы находим:

В зависимости от соотношения величин реактивных проводимостей ветвей с индуктивностью и емкостью можно отметить три случая.

1. BL> BC. Для этого случая векторная диаграмма представлена на рис. 14.12, а. На диаграмме построены треугольники токов для катушки и конденсатора и найдены векторы токов I1 и I2 в этих элементах:

Векторная сумма токов l1 + I2 = I дает общий ток в цепи. Вместе с тем вектор I является гипотенузой прямоугольного треугольника токов, катеты которого — составляющие вектора тока по двум взаимно перпендикулярным осям:

Iа = I1G + I2G — активная составляющая;
Ip = IL + IC — реактивная составляющая.

Векторы активных составляющих токов направлены в одну сторону, поэтому их численные значения складываются. Векторы реактивных составляющих токов направлены перпендикулярно вектору напряжения в противоположные стороны, поэтому им даются разные знаки: индуктивные токи считаются положительными, а емкостные — отрицательными. При одинаковом напряжении на всех элементах цепи IL > IC. Общий ток отстает от общего напряжения по фазе на угол ф.

Из треугольника токов следует

где G = G1 + G2 и В = BL — Bc — общие активная и реактивная проводимости цепи;

полная проводимость цепи. Эти три проводимости графически можно изобразить сторонами прямоугольного треугольника проводимостей, который получается уже известным способом’ из треугольника токов.

Полная проводимость цепи У является коэффициентом пропорциональности между действующими величинами общего тока и напряжения цепи:

Из треугольников токов и проводимостей определяют величины:

Угол сдвига по фазе между напряжением и общим током в цепи положительный(ф> 0).

2. ВL<ВC. Векторная диаграмма изображена на рис. 14.12,б. Так как IL<Iс. то напряжение отстает от общего тока на угол ф<0.

Реактивная проводимость цепи имеет емкостный характер. Расчетные формулы, полученные для случая 1, действительны и для этого случая.

3. BL = ВC. В этом случае реактивные составляющие токов катушки и конденсатора равны по величине: IL = IC. Реактивная составляющая общего тока и общая реактивная проводимость равны нулю. Общий ток совпадает по фазе с напряжением и равен по величине активной составляющей тока. Угол ф сдвига фаз между общим током и напряжением равен нулю.

Общий ток в цепи и напряжение связаны формулой

I = UG, или U = I/G.

В случае ВL = ВC в цепи имеет место резонанс токов.

Энергетический процесс в цепи

Из векторной диаграммы токов легко получить треугольник мощностей, из которого следуют те же формулы (14.2), которые были получены для последовательного соединения катушки и конденсатора.

Реактивные мощности индуктивности и емкости входят в расчет с разными знаками: реактивная мощность индуктивности положительна, а реактивная мощность емкости отрицательна. В соответствии с этим знак реактивной мощности всей цепи может быть тем или другим, что следует из формул (14.2).

Если ф> 0, то Q> 0; при ф< 0 Q< 0.

Активная мощность положительна при любом значении угла. Полная мощность тоже всегда положительна.

В рассматриваемой цепи активная мощность имеет определенную величину (Р ≠ 0), следовательно, имеет место преобразование электрической энергии в другой вид.

Кроме того, часть энергии, полученной от генератора, возвращается обратно в генератор (Q ≠ 0 при ф ≠ 0).

Обмен энергией совершается также между катушкой и конденсатором.

Параллельное включение конденсатора и катушки индуктивности в цепь переменного тока

Параллельное включение конденсатора и катушки индуктивности в цепь переменного тока

Рассмотрим явления в цепи переменного тока, содержащей генератор, конденсатор и катушку индуктивности, соединенные параллельно. Предположим при этом, что активным сопротивлением цепь не обладает.

Очевидно, в такой цепи напряжение как на катушке, так и на конденсаторе в любой момент времени равно напряжению, развиваемому генератором.

Общий же ток в цепи слагается из токов в ее разветвлениях. Ток в индуктивной ветви отстает по фазе от напряжения на четверть периода, а ток в емкостной ветви опережает его на те же четверть периода. Поэтому токи в ветвях в любой момент времени оказываются сдвинутыми по фазе один относительно другого на полупериода, т. е. находятся в противофазе. Таким образом токи в ветвях в любой момент времени направлены навстречу один другому, а общий ток в неразветвленной части цепи равен разности их.

Это дает нам право написать равенство I = IL -IC

где I — действующее значение общего тока в цепи, IL и IC — действующие значения токов в.ветвях.

Пользуясь законом Ома для определения действующих значений тока в ветвях, получим:

Il = U / XL и IC = U / XC

Если в цепи преобладает индуктивное сопротивление, т. е. XL больше XC, ток в катушке меньше тока в конденсаторе; следовательно, ток в неразветвленном участке цепи носит емкостный характер, и цепь в целом для генератора будет емкостной. И, наоборот, при ХC большем XL, ток в конденсаторе меньше тока в катушке; следовательно, ток в неразветвленном участке цепи имеет индуктивный характер, и цепь в целом для генератора будет индуктивной.

При этом не следует забывать, что в том и другом случае нагрузка реактивная, т. е. цепь не потребляет энергии генератора.

Резонанс токов

Рассмотрим теперь случай, когда у параллельно соединенных конденсатора и катушки оказались равными их реактивные сопротивления, т. е. XlL = XC.

Если мы, как и прежде, будем считать, что катушка и конденсатор не обладают активным сопротивлением, то при равенстве их реактивных сопротивлений (YL = YC) общий ток в неразветвленной части цепи окажется равным нулю, тогда как в ветвях будут протекать равные токи наибольшей величины. В цепи в этом случае наступает явление резонанса токов.

При резонансе токов действующие значения токов в каждом разветвлении, определяемые отношениями IL = U / XL и IC= U / XC будут равны между собой, так XL = ХC.

Вывод, к которому мы пришли, может показаться на первый взгляд довольно странным. Действительно, генератор нагружен двумя сопротивлениями, а тока в неразветвленной части цепи нет, тогда как в самих сопротивлениях протекают равные и притом наибольшие по величине токи.


Объясняется это поведением магнитного поля катушки и электрического поля конденсатора. При резонансе токов, как и при резонансе напряжений, происходит колебание энергии между полем катушки и полем конденсатора. Генератор, сообщив однажды энергию цепи, сказывается как бы изолированным. Его можно было бы совсем отключить, и ток в разветвленной части цепи поддерживался бы без генератора энергией, которую в самом начале запасла цепь. Равно и напряжение на зажимах цепи оставалось бы точно таким, какое развивал генератор.

Таким образом, и при параллельном соединении катушки индуктивности и конденсатора мы получили колебательный контур, отличающийся от описанного выше только тем, что генератор, создающий колебания, не включен непосредственно в контур и контур получается замкнутым.

Графики токов, напряжения и мощности в цепи при резонансе токов: а — активное сопротивление равно нулю, цепь мощности не потребляет; б — цепь обладает активным сопротивлением, в неразветвленной части цепи появился ток, цепь потребляет мощность

Значения L, С и f, при которых наступает резонанс токов, определяются, как и при резонансе напряжений (если пренебречь активным сопротивлением контура), из равенства:

ωL = 1 / ωC

Следовательно:

fрез = 1 / 2π√LC

Lрез = 1 / ω2С

Срез = 1 / ω2L

Изменяя любую из этих трех величин, можно добиться равенства Xl = Xc, т. е. превратить цепь в колебательный контур.

Итак, мы получили замкнутый колебательный контур, в котором можно вызвать электрические колебания, т. е. переменный ток. И если бы не активное сопротивление, которым обладает всякий колебательный контур, в нем непрерывно мог бы существовать переменный ток. Наличие же активного сопротивления приводит к тому, что колебания в контуре постепенно затухают и, чтобы поддержать их, необходим источник энергии — генератор переменного тока.


В цепях несинусоидального тока резонансные режимы возможны для различных гармоничных состовляющих.

Резонанс токов широко используется в практике.Явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту. Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции. Колебательный контур, работающий в режиме резонанса токов, является одним из основных узловэлектронных генераторов.

Если в цепь переменного тока включены последовательно катушка индуктивности иконденсатор, то они по-своему воздействуют на генератор, питающий цепь, и на фазовые соотношения между током и напряжением.

Катушка индуктивности вносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, наоборот, заставляет напряжение в цепи отставать по фазе от тока на четверть периода. Таким образом, действие индуктивного сопротивления на сдвиг фаз между током и напряжением в цепи противоположно действию емкостного сопротивления.

Это приводит к тому, что общий сдвиг фаз между током и напряжением в цепи зависит от соотношения величин индуктивного и емкостного сопротивлений.

Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный характер, т. е. напряжение отстает по фазе от тока. Если же, наоборот, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, следовательно, цепь носит индуктивный характер.

Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется путем сложения индуктивного сопротивления катушки XL и емкостного сопротивления конденсатора ХС.

Но так как действие этих сопротивлений в цепи противоположно, то одному из них, а именно Хс приписывается знак минус, и общее реактивное сопротивление определяется по формуле:

Применив к этой цепи закон Ома, получим:

Формулу эту можно преобразовать следующим образом:

В полученном равенстве IXL —действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а IХС—действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

Таким образом, общее напряжение цепи, состоящей из последовательного соединения катушки и конденсатора, можно рассматривать как состоящее из двух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

Мы считали, что такая цепь не обладает активным сопротивлением. Однако в тех случаях, когда активное сопротивление цепи не настолько уже мало, чтобы им можно было пренебречь, общее сопротивление цепи определяется следующей формулой:

где R — общее активное сопротивление цепи, XL -ХС — ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать:

Резонанс напряжений

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой последовательно, то резонанс в такой цепи называется последовательным резонансом или резонансом напряжений. Характерная черта резонанса напряжений — значительные напряжения на емкости и на индуктивности, по сравнению с ЭДС источника.

Причина появления такой картины очевидна. На активном сопротивлении по закону Ома будет напряжение Ur, на емкости Uc, на индуктивности Ul, и составив отношение Uc к Ur можно найти величину добротности Q. Напряжение на емкости будет в Q раз больше ЭДС источника, такое же напряжение окажется приложенным к индуктивности.

То есть резонанс напряжений приводит к возрастанию напряжения на реактивных элементах в Q раз, а резонансный ток будет ограничен ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, сопротивление последовательного контура на резонансной частоте минимально.

Резонанс токов

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой параллельно, то резонанс в такой цепи называется параллельным резонансом или резонансом токов. Характерная черта резонанса токов — значительные токи через емкость и индуктивность, по сравнению с током источника.

Причина появления такой картины очевидна. Ток через активное сопротивление по закону Ома будет равен U/R, через емкость U/XC, через индуктивность U/XL, и составив отношение IL к I можно найти величину добротности Q. Ток через индуктивность будет в Q раз больше тока источника, такой же ток будет течь каждые пол периода в конденсатор и из него.

То есть резонанс токов приводит к возрастанию тока через реактивные элементы в Q раз, а резонансная ЭДС будет ограничена ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, на резонансной частоте сопротивление параллельного колебательного контура максимально.

Применение резонанса токов

Аналогично резонансу напряжений, резонанс токов применяется в различных фильтрах. Но включенный в цепь, параллельный контур действует наоборот, чем в случае с последовательным: установленный параллельно нагрузке, параллельный колебательный контур позволит току резонансной частоты контура пройти в нагрузку, поскольку сопротивление самого контура на собственной резонансной частоте максимально.

Установленный последовательно с нагрузкой, параллельный колебательный контур не пропустит сигнал резонансной частоты, поскольку все напряжение упадет на контуре, а на нагрузку придется мизерная доля сигнала резонансной частоты.

Так, основное применение резонанса токов в радиотехнике — создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.

В электротехнике резонанс токов используется с целью достижения высокого коэффициента мощности нагрузок, обладающих значительными индуктивными и емкостными составляющими.

Например, установки компенсации реактивной мощности (КРМ) представляют собой конденсаторы, подключаемые параллельно обмоткам асинхронных двигателей и трансформаторов, работающих под нагрузкой ниже номинальной.

К таким решениям прибегают как раз с целью достижения резонанса токов (параллельного резонанса), когда индуктивное сопротивление оборудования делается равным емкостному сопротивлению подключаемых конденсаторов на частоте сети, чтобы реактивная энергия циркулировала между конденсаторами и оборудованием, а не между оборудованием и сетью; чтобы сеть отдавала энергию только тогда, когда оборудование нагружено и потребляет активную мощность.

Когда же оборудование работает в холостую, сеть оказывается подключена параллельно резонансному контуру (внешние конденсаторы и индуктивность оборудования), который представляет для сети очень большое комплексное сопротивление и позволяет снизитьсякоэффициенту мощности.

ЛитератураПравить

§ Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 928.

§ Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.

Параллельное включение конденсатора и катушки индуктивности в цепь переменного тока

Рассмотрим явления в цепи переменного тока, содержащей генератор, конденсатор и катушку индуктивности, соединенные параллельно. Предположим при этом, что активным сопротивлением цепь не обладает.

Очевидно, в такой цепи напряжение как на катушке, так и на конденсаторе в любой момент времени равно напряжению, развиваемому генератором.

Общий же ток в цепи слагается из токов в ее разветвлениях. Ток в индуктивной ветви отстает по фазе от напряжения на четверть периода, а ток в емкостной ветви опережает его на те же четверть периода. Поэтому токи в ветвях в любой момент времени оказываются сдвинутыми по фазе один относительно другого на полупериода, т. е. находятся в противофазе. Таким образом токи в ветвях в любой момент времени направлены навстречу один другому, а общий ток в неразветвленной части цепи равен разности их.

Это дает нам право написать равенство I = IL -IC

где I — действующее значение общего тока в цепи, IL и IC — действующие значения токов в.ветвях.

Пользуясь законом Ома для определения действующих значений тока в ветвях, получим:

Il = U / XL и IC = U / XC

Если в цепи преобладает индуктивное сопротивление, т. е. XL больше XC, ток в катушке меньше тока в конденсаторе; следовательно, ток в неразветвленном участке цепи носит емкостный характер, и цепь в целом для генератора будет емкостной. И, наоборот, при ХC большем XL, ток в конденсаторе меньше тока в катушке; следовательно, ток в неразветвленном участке цепи имеет индуктивный характер, и цепь в целом для генератора будет индуктивной.

При этом не следует забывать, что в том и другом случае нагрузка реактивная, т. е. цепь не потребляет энергии генератора.

Резонанс токов

Рассмотрим теперь случай, когда у параллельно соединенных конденсатора и катушки оказались равными их реактивные сопротивления, т. е. XlL = XC.

Если мы, как и прежде, будем считать, что катушка и конденсатор не обладают активным сопротивлением, то при равенстве их реактивных сопротивлений (YL = YC) общий ток в неразветвленной части цепи окажется равным нулю, тогда как в ветвях будут протекать равные токи наибольшей величины. В цепи в этом случае наступает явление резонанса токов.

При резонансе токов действующие значения токов в каждом разветвлении, определяемые отношениями IL = U / XL и IC= U / XC будут равны между собой, так XL = ХC.

Вывод, к которому мы пришли, может показаться на первый взгляд довольно странным. Действительно, генератор нагружен двумя сопротивлениями, а тока в неразветвленной части цепи нет, тогда как в самих сопротивлениях протекают равные и притом наибольшие по величине токи.

Объясняется это поведением магнитного поля катушки и электрического поля конденсатора. При резонансе токов, как и при резонансе напряжений, происходит колебание энергии между полем катушки и полем конденсатора. Генератор, сообщив однажды энергию цепи, сказывается как бы изолированным. Его можно было бы совсем отключить, и ток в разветвленной части цепи поддерживался бы без генератора энергией, которую в самом начале запасла цепь. Равно и напряжение на зажимах цепи оставалось бы точно таким, какое развивал генератор.

Таким образом, и при параллельном соединении катушки индуктивности и конденсатора мы получили колебательный контур, отличающийся от описанного выше только тем, что генератор, создающий колебания, не включен непосредственно в контур и контур получается замкнутым.

Графики токов, напряжения и мощности в цепи при резонансе токов: а — активное сопротивление равно нулю, цепь мощности не потребляет; б — цепь обладает активным сопротивлением, в неразветвленной части цепи появился ток, цепь потребляет мощность

Значения L, С и f, при которых наступает резонанс токов, определяются, как и при резонансе напряжений (если пренебречь активным сопротивлением контура), из равенства:

ωL = 1 / ωC

Следовательно:

fрез = 1 / 2π√LC

Lрез = 1 / ω2С

Срез = 1 / ω2L

Изменяя любую из этих трех величин, можно добиться равенства Xl = Xc, т. е. превратить цепь в колебательный контур.

Итак, мы получили замкнутый колебательный контур, в котором можно вызвать электрические колебания, т. е. переменный ток. И если бы не активное сопротивление, которым обладает всякий колебательный контур, в нем непрерывно мог бы существовать переменный ток. Наличие же активного сопротивления приводит к тому, что колебания в контуре постепенно затухают и, чтобы поддержать их, необходим источник энергии — генератор переменного тока.

В цепях несинусоидального тока резонансные режимы возможны для различных гармоничных состовляющих.

Резонанс токов широко используется в практике.Явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту. Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции. Колебательный контур, работающий в режиме резонанса токов, является одним из основных узловэлектронных генераторов.

Если в цепь переменного тока включены последовательно катушка индуктивности иконденсатор, то они по-своему воздействуют на генератор, питающий цепь, и на фазовые соотношения между током и напряжением.

Катушка индуктивности вносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, наоборот, заставляет напряжение в цепи отставать по фазе от тока на четверть периода. Таким образом, действие индуктивного сопротивления на сдвиг фаз между током и напряжением в цепи противоположно действию емкостного сопротивления.

Это приводит к тому, что общий сдвиг фаз между током и напряжением в цепи зависит от соотношения величин индуктивного и емкостного сопротивлений.

Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный характер, т. е. напряжение отстает по фазе от тока. Если же, наоборот, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, следовательно, цепь носит индуктивный характер.

Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется путем сложения индуктивного сопротивления катушки XL и емкостного сопротивления конденсатора ХС.

Но так как действие этих сопротивлений в цепи противоположно, то одному из них, а именно Хс приписывается знак минус, и общее реактивное сопротивление определяется по формуле:

Применив к этой цепи закон Ома, получим:

Формулу эту можно преобразовать следующим образом:

В полученном равенстве IXL —действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а IХС—действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

Таким образом, общее напряжение цепи, состоящей из последовательного соединения катушки и конденсатора, можно рассматривать как состоящее из двух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

Мы считали, что такая цепь не обладает активным сопротивлением. Однако в тех случаях, когда активное сопротивление цепи не настолько уже мало, чтобы им можно было пренебречь, общее сопротивление цепи определяется следующей формулой:

где R — общее активное сопротивление цепи, XL -ХС — ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать:

Параллельное соединение индуктивной катушки и конденсатора

⇐ ПредыдущаяСтр 31 из 35

На рис.3 представлена схема цепи с параллельным соединением индуктивной катушки и конденсатора.

Рис.3.схема цепи с параллельным соединением индуктивной катушки и конденсатора

Ток неразветвленного участка цепи определяется по первому закону Кирхгофа в векторной форме

,(8)

где — ток конденсатора,

-ток катушки.

На рис. 4 представлена векторная диаграмма, построенная по уравнению (8).

Рис.4.векторная диаграмма, построенная по уравнению (8)

Векторы токов и разложены на составляющие. Составляющие, параллельные вектору напряжения , совпадают с ним по фазе и называются активными токами и .Составляющие, перпендикулярные вектору напряжения , называются реактивными токами и . Реактивный ток второй ветви отстает от вектора на и является индуктивным током . Ток первой ветви опережает вектор на и является емкостным током . Индуктивный и емкостный токи находятся в противофазе, поэтому модуль реактивного тока неразветвленного участка цепи . Из рис. 4 следует, что модуль тока неразветвленного участка цепи

. (9)

Для анализа разветвленных цепей переменного тока используют проводимости. Токи в параллельных ветвях пропорциональны входному напряжению

, , , (10)

где G– активная проводимость,

BL – индуктивная проводимость,

BC – емкостная проводимость.

Подставим выражения (10) в формулу (9).

,

, (11)

где Y – полная проводимость

. (12)

Выражение (11) представляет собой закон Ома через проводимости для цепи переменного тока с параллельным соединением ветвей.

В зависимости от соотношения между индуктивной и емкостной проводимостями в цепи возможны три режима:

1. BL>BC – цепь имеет индуктивный характер, IL>IC, вектор тока неразветвленного участка цепи отстает по фазе от вектора напряжения на угол j (рис.5,а).

2. BС>BL – цепь имеет емкостный характер, IC>IL, вектор тока неразветвленного участка цепи опережает по фазе напряжение на угол j (рис.4).

3.BL=BC , IL=IC и вектор тока неразветвленного участка цепи совпадает по фазе с напряжением , т.е. угол j =0 (рис.5,б).

а) BL>BC

б) BL=BC

Рис.5.

Режим, при котором в цепи, содержащей параллельные ветви с индуктивным и емкостным элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением (j =0), называется резонансом токов.

Условие резонанса токов

BL=BC, (13)

т.е. равенство индуктивной и емкостной проводимостей.

Для цепи, изображенной на рис.3

, .

Подставляя эти значения проводимостей в условие резонанса токов, получим

Отсюда видно, что резонанс токов может быть достигнут изменением параметров цепи L, C или изменением частоты входного напряжения w.

Из выражений (10) следует, что резонансу токов соответствует равенство модулей реактивных составляющих токов ветвей IL=IC. Векторы этих токов находятся в противофазе и реактивная составляющая тока неразветвленного участка цепи Iр=0 . В соответствии с (9) ток неразветвленного участка цепи равен только активной составляющей I = Ia и имеет минимальное значение, что является признаком резонанса токов. Это же видно из закона Ома через проводимости (11).

При резонансе токов токи в ветвях значительно больше тока неразветвленной части цепи. Это свойство – усиление тока – является важнейшей особенностью резонанса токов. Отсюда и название этого явления.

Реактивная мощность цепи Q=UIsinj при резонансе равна нулю, т.к. угол j=0 (рис.5, б).

Активная мощность цепи равна полной мощности P = S, а коэффициент мощности cosj =1

. (14)

а) цепь, состоящая из параллельно соединенных идеальной катушки, у которой активное сопротивление R = 0, и конденсатора

б) из ветвей проходит ток и в неразветвленной части цепи ток I = 0, т.к. токи ветвей равны по величине и противоположны по фазе

Рис.6.

Особый интерес представляет цепь, состоящая из параллельно соединенных идеальной катушки, у которой активное сопротивление R = 0, и конденсатора (рис.6, а).

Условие резонанса токов такой цепи или сводится к условию резонанса напряжений .

При этом хотя в каждой из ветвей проходит ток и в неразветвленной части цепи ток I = 0, т.к. токи ветвей равны по величине и противоположны по фазе (рис.6, б). Поэтому такой параллельный контур используется в качестве элемента электрических фильтров (фильтр-пробка) радиотехнических устройств.

Резонанс токов находит применение не только в радиотехнических устройствах. Он широко используется в промышленных электроэнергетических установках для повышения коэффициента мощности cosj.

Date: 2015-11-13; view: 456; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *