Виды осадков в химии

Уроки по неорганической химии для подготовки к ЕГЭ

Цвета соединений, знание которых необходимо для сдачи ЕГЭ

1. Медь – мягкий пластичный металл розового цвета. Степени окисления: +1, +2.

Cu2O – кристаллическое, нерастворимое в воде вещество кирпично-красного цвета.

CuO – кристаллы чёрного цвета, практически нерастворимые в воде.

Cu(OH)2 – голубое аморфное или кристаллическое вещество; практически не растворимо в воде.

CuSO4 – кристаллическое вещество белого цвета, хорошо растворяется в воде. Из водных растворов кристаллизуется пентагидрат CuSO4·5H2O – медный купоро́с, кристаллы голубого цвета (при нагревании снова теряет воду и становится белым). Водный раствор CuSO4 также голубого цвета.

2. Цинк – металл голубовато-белого цвета, мягкий, хрупкий. Степень окисления: +2.

ZnO, Zn(OH)2, ZnS – белые твердые вещества, нерастворимые в воде.

3. Алюминий – легкий металл серебристо-белого цвета. Степень окисления: +3.

Al2O3, Al(OH)3 – белые твердые вещества, нерастворимые в воде.

AlPO4 — твёрдое, белое кристаллическое вещество, нерастворимое в воде.

4. Серебро – блестящий белый мягкий пластичный металл. Степень окисления: +1.

AgCl – белое твердое нерастворимое в воде вещество.

AgBr – светло-желтое твердое нерастворимое в воде вещество.

AgI – твердое нерастворимое в воде вещество желтого цвета.

Ag2O — твердое нерастворимое в воде вещество черного цвета.

Ag3PO4 — твердое нерастворимое в воде вещество желтого цвета.

5. Железо – серебристо-серый мягкий ковкий металл. Степени окисления: +2, +3, +6.

FeO – твердое нерастворимое в воде вещество черного цвета.

Fe(OH)2 – серо-зеленый осадок, студенистый осадок зеленого цвета. Не растворяется в воде.

Fe2O3, Fe(OH)3 – твердые красно-коричневые (бурые), нерастворимые в воде соединения.

Fe3O4 – твердое черное вещество. Не растворяется в воде.

FeCl3 – раствор желтого цвета.

6. Сера – желтое нерастворимое в воде вещество. Степени окисления: -2, +4, +6.

SO2 – бесцветный газ с неприятным запахом; газ, образующийся в момент зажигания спички

H2SO4 – тяжелая бесцветная жидкость, растворяется в воде с сильным разогреванием раствора.

7. Хром — твёрдый металл голубовато-белого цвета.

CrO — твердое вещество ченого цвета.

Cr2O3 — твердое вещество темно-зеленого цвета.

CrO3 — твердое вещество красного цвета.

Na2Cr2O7 и другие дихроматы — соединения оранжевого цвета.

Na2CrO4 и другие хроматы — соединения желтого цвета.

Cr2(SO4)3 — в растворе сине-фиолетового цвета (кислотная среда).

K3 — в растворе зеленого цвета (щелочная среда).

8. Марганец — металл серебристо-белого цвета.

MnO2 — твердое нерастворимое в воде вещество бурого цвета.

Mn(OH)2 — белый осадок.

KMnO4 — пурпурные кристаллы, растворяется в воде с образованием фиолетового раствора.

K2MnO4 — растворимая соль темно-зеленого цвета.

Mn(NO3)2, MnCl2, MnBr2 и некоторые другие соли Mn+2 — как правило, розовые растворимые в воде соединения.

9. Фосфор — неметалл. Основные модификации: белый, красный и черный фосфор.

Ag3PO4 — твердое нерастворимое в воде вещество желтого цвета.

AlPO4 — твердое нерастворимое в воде вещество белого цвета.

Li3PO4 — твердое нерастворимое в воде вещество белого цвета.

Ba3(PO4)2 — осадок белого цвета

10. Свинец — ковкий, тяжёлый металл серебристо-белого цвета.

PbS — осадок черного цвета.

PbSO4 — осадок белого цвета.

PbI2 – осадок ярко-желтого цвета.

11. Соединения бария:

BaSO4 – белый осадок нерастворимый в кислотах

BaSO3 – белый осадок растворимый в кислотах

Ba3(PO4)2 — осадок белого цвета

BaCrO4 — осадок желтого цвета

Виды осадков

Образование первичного кристалла возможно только при столкновении довольно большого количества реагирующих ионов в определённом соотношении и при определённом расположении в пространстве. Кроме того, в растворах электролиты окружены гидратной оболочкой и довольно прочно связаны с ней. Большинство осадков не содержит воды или содержит её значительно меньше, чем было связано с ионами в растворе. Очевидно, при образовании осадков одновременно разрушается гидратная оболочка реагирующих ионов.

Процесс образования осадка протекает в несколько стадий. Вначале образуются центры кристаллизации, первичные кристаллы. Затем эти первичные кристаллы или их небольшие агрегаты соединяются в значительно более крупные частицы и выпадают в осадок. Эта последняя стадия может проходить разными путями, в зависимости от которых получается тот или иной вид осадка.

Аморфный осадок. Быстрое прибавление осадителя к концентрированному раствору вызывает образование мелких агрегатов, которые соединяются в более крупные объёмистые частицы, слабо связанные между собой. Существенной характеристикой аморфного осадка является большая общая поверхность. В связи с этим на поверхности аморфного осадка происходит адсорбция посторонних веществ. Аморфный осадок образуют многие сульфиды металлов, гидрооксиды металлов, кремниевая кислота и др. Аморфные осадки отделяют сразу после осаждения.

Кристаллический осадок. Постепенное медленное прибавление осадителя к разбавленному раствору вызывает образование новых центров кристаллизации. Вещество некоторое время остается в пересыщенном растворе. При постепенном добавлении осадителя происходит рост образовавшихся ранее кристаллических центров. В результате образуется кристаллический осадок, состоящий из крупных кристаллов. Кристаллические осадки требуют времени для созревания от 30 мин до суток в зависимости от природы вещества. С кристаллическими осадками работать удобнее, чем с аморфными.

Виды соосаждения

При образовании твердой фазы в осадок обычно переходят такие компоненты, которые сами по себе не осаждаются в данных условиях. Это явление называется соосаждением, которое влияет на точность метода анализа.

Например: Образование осадков типа (PbCl)2S вместе с PbS, т.е. имеет место соосаждение хлоридов при осаждении сульфида свинца.

Соосаждение наблюдается так же при работе с органическими осадителями, хотя, вследствие сложного характера соответствующих соединений, соосаждение в этих случаях невелико.

Выделяют следующие виды соосаждения:

Поверхностная адсорбция (поверхностное поглощение) – захваченное вещество находится полностью на поверхности сформированного осадка. Удаляется с поверхности промыванием.

Окклюзия (или внутренняя адсорбция) — захваченное вещество находится внутри кристаллов при выделении основного осадка. При формировании осадка в растворе, где есть посторонние ионы, в начале осаждения в растворе есть избыток осаждаемого иона, а в конце осаждения в растворе имеется избыток осадителя. В процессе осаждения поверхность осадка непрерывно обновляется, покрывается новыми слоями вещества. При этом каждый слой адсорбирует примесь, часть которой остаётся внутри кристалла, внутри частиц осадка. Эти примеси не удаляются при промывании осадка.

Послеосаждение — примесь в осадке появляется после формирования осадка.

Например. Если через кислый раствор, содержащий ионы Cu2+ и Zn2+, пропускать H2S, то сначала образуется осадок CuS (без примеси цинка). Далее идет адсорбция H2S на поверхности CuS, в результате местного повышения концентрации H2S здесь начинает осаждаться ZnS, несмотря на достаточно высокую кислотность раствора. (ПР (Коs) (CuS) = 6,3•10–36;

ПР (Коs) (ZnS) = 1,1•10–21).

На соосаждение влияет порядок сливания растворов, скорость осаждения. При осаждении из разбавленных растворов увеличивается объём и общая поверхность осадка, что способствует большему загрязнению осадка. Более чистый осадок получается при осаждении из концентрированных растворов, так как поверхность осадка при этом уменьшается. После образования осадка раствор разбавляют и таким путем ослабляют адсорбцию примесей, т.е. уменьшают степень загрязнения осадка.

Известно, что на поверхности твердой фазы наиболее сильно адсорбируются общие (одноименные) ионы, а так же ионы, образующие с ионами осадка малорастворимые соединения; ионы, образующие мало диссоциирующие соединения; ионы H+, OH-.

С явлением соосаждения в количественном анализе связаны две важные проблемы:

  1. получение чистых осадков;

  2. выделение малых количеств элементов путем их осаждения с коллектором (собирающее место).

Способы очистки осадка от загрязнения: обычно используют промывание осадка и переосаждение.

Если произведение концентраций ионов (ионное произ­ведение) труднорастворимого электролита меньше его произведения растворимости, раствор является нена­сыщенным. В тот момент, когда ионное произведение достигнет величины ПР данного электролита, раствор станет .насыщенным относительно этого электролита. Если ионное произведение превысит величину ПР, начинается выпадение осадка:

i’ <npAgci — ненасыщенный раствор;

ii =nPAgci —насыщенный раствор;

: >nPAgci —пересыщенный 2= 1 • 10-1-(1 • Ю-1)2 = Ы0-«.

Полученная величина превышает ПРрьа2 (2,4-Ю-4). Поэтому часть соли PbCfo выпадет в осадок.

Из всего сказанного выше мы можем сделать вывод о влиянии различных факторов на образование осадков.

1. Влияние концентрации растворов. Трудиораство-римый электролит с достаточно большой величиной ‘ПР нельзя осадить из разбавленных растворов. Например, осадок РЬСЬ не будет выпадать при смешении равных объемов 0,1 М растворов Pb(N03)2 и NaCl.

При смешении равных объемов концентрации каждо­го из веществ станут 0,1 : 2 = 0,05 М или 5-10 ~2 моль/л. Ионное произведение

2 = 5- Ю-2 (5- Ю-2)2 = 12,5-10-«.

Полученная величина меньше ПРРьс12. следовательно выпадения осадка не произойдет.

2. Влияние количества осадителя. Для возможно более полного осаждения употребляют избыток осадителя.
Например, осаждаем соль ВаС03:

ВаС12 + Na2C03 = BaC03J + 2NaCl

После прибавления эквивалентного количества Ыа2СОз в растворе остаются ионы Ва2+, концентрация которых обусловлена величиной ПР. Повышение концентрации ионов СО!”, вызванное прибавлением избытка осадителя (Na2C03), повлечет за собой соответственное уменьше­ние концентрации ионов Ва2+ в растворе, т. е. увеличит полноту осаждения этого иона. Однако большого избыт­ка осадителя следует избегать по ряду причин (образо­вание комплексных солей, кислых солей и пр.). На прак­тике обычно употребляют не более чем полуторный из­быток осадителя.

Большое значение имеет степень диссоциации осади­теля. Концентрация ионов, вступающих в реакцию, у слабого электролита во ‘много раз меньше концентрации самого электролита, а следовательно, осаждение мало-диссоциированным реактивом будет гораздо менее пол­ным.

3. Влияние одноименного иона. Растворимость труднорастворимых электролитов понижается в присутствии
других сильных электролитов, имеющих одноименные ионы.

Если к ненасыщенному раствору BaS04 прибавлять понемногу раствор Na2S04, то ионное произведение, которое ‘было сначала меньше nPBaso4 (1,1-Ю-10), постепенно достигнет ПР и превысит его. Начнется выпадение осадка.

Соли с одноименным ионом понижают растворимость солей с довольно большой растворимостью.

4. Солевой эффект. Соли, не имеющие одноименного иона, тоже влияют на растворимость электролитов, но влияни в данном случае противоположное: растворимость электролита повышается. Так, например, раство римость PbS04 повышается в присутствии нитратов калия или натрия, а растворимость AgCl повышается в присутствии сульфатов «атрия или калия. Описанное явление называется солевым эффектом.

5. Влияние температуры. Произведение растворимо­сти является постоянной величиной при постоянной тем­пературе. С увеличением температуры величина произ­ведения растворимости возрастает, поэтому осаждение, как правило, проводят из холодных растворов. Осаж­дение из горячих растворов проводят лишь тогда, когда температура благоприятно влияет на характер осадка (переход из аморфного состояния в кристаллическое, предотвращение образования коллоидных растворов и т. д.).

Химические осадки

Химические осадки

Химические осадки – образовались в резуль­тате растворения первичных горных пород с последую­щим выпадением из растворов в виде химических соеди­нений.

Рубрика термина: Минералы

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. — Калининград. Под редакцией Ложкина В.П.. 2015-2016.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *