Однородная и неоднородная система

ФРС. Фундаментальное решение системы уравнений

Каждое уравнение или переносится на новую строку или разделяется точкой с запятой

Исходная система уравнений

Фундаментальная система решений (ФСР) данной системы уравнений

База системы/знаменатель

Попробуем решить систему уравнений, типа

Решение подобных систем неразрывно связывают с формулой приведения матрицы к треугольному виду. Это наглядно, красиво и никогда не дает сбоев. Есть только одно но, нужно делать очень много ручной работы и использовать понятия ранга матрицы

Нет никаких сомнений подвергать выверенную веками технологию, но есть не менее красивое решение используя векторное произведение. Информации по ним на январь 2019 года в интернете нет, поэтому скромно назовемся первооткрывателем.

Это решение конечно же не оптимально (по быстродействию), так как при вычислении векторного произведения, надо вычислять определитель матрицы, а это так или иначе вычисление треугольной матрицы.

Но решение красиво и наглядно, кроме этого легко видеть критерий при котором система не имеет решений.

В чем же суть методики?

Решая эту систему как произведение двух векторов, мы получим

А следоватетельно, корни системы равны

Для тех кто не верит, это легко проверяется подстановкой

Такой же нехитрый прием используется и при системах где количество переменных может быть и пять и десять.

Рассмотрим, как же решаются такие системы с помощью векторных произведений.

Итак, у нас есть исходная система

Приведем её вот в такой вид

У нас получилось 6 столбцов.

На этом этапе не будем вводить новых сущностей и не используем в своей работе понятия ранга матрицы. Мы просто видим что уравнений 3, а переменных 5-ть. Следовательно общее решение будет использовать 5-3=2 независимых переменных.

На этом же шаге, мы можем определить, какие же из переменных будут свободными. Так как фантазии ноль, то те из переменных, которые будут правее всех, те и станут свободными.

То есть свободными у нас будут две переменных

А теперь за три шага определяем фундаментальное решение исходной системы

Шаг1.

Шаг 2.

Шаг 3.

Нет необходимости подробно рассказывать откуда мы берем данные. Это очевидно

Интереснее то, что мы с этими «векторами» делать будем.

Разделим их на -81

получаем следующие три вектора

Таким образом фундаментальное решение принимает вид

Великолепно! Не правда ли….

Хочется еще что то решить…. Еще один пример

Это интересное уравнение, так вектора в любом сочетании будут давать ноль.

Это говорит нам о том, что одно из уравнений «лишнее». Согласимся с этим и уберем его. Например последнее.

Тогда нам надо выбрать две свободных переменных, пусть это будут переменные с индексами 2 и 4.

Тогда вектора находятся как

Разделим на -3 и наше общее решение будет иметь вид

Не каждому сразу становиться ясно откуда у нас появляются нули и единицы в нашем стройном вектором ряде. Это связано с тем, что мы свободные переменные выбрали как нашей душе угодно, а не самые крайние правые.

Если бы мы взяли переменные с индексами 3 и 4 как свободные то решение бы мы переписали так как нам бы выдала машина.

В начале статьи мы упомянули о критерии неразрешимости той или иной системы уравнений. В классической версии для этого исползуется правило Кронекера-Копелли, здесь же просто анализируется результат векторного произведения.

Если результирующий вектор имеет вид

где , а среди всех оставшихся есть хотя бы один не нулевой, то такая система решений не имеет

Примеры, неразрешимых систем уравнений

Если результирующий вектор имеет все нулевые коэффициенты ( мы такой пример рассмотрели выше), то это говорит о том, что или как минимум одно из уравнений есть линейное представление другого, и/или одна из переменных пропорциональна другой.

Калькулятор, представленный здесь, дает Вам возможность самому проанализировать исходную систему, за Вас он лишь сделает точные расчеты, по тем данным, что Вы ему введете.

Вот один из примеров

Вопрос 43. Система линейных уравнений, однородная и неоднородная система, решение системы, совместная и несовместная система, эквивалентные системы

Системой линейных алгебраических уравнений с неизвестными называется система уравнений вида

Числа называются коэффициентами системы; — свободными членами, — неизвестными. Количество уравнений в системе может быть меньше, больше или равно числу неизвестных.

Система называется однородной, если все свободные члены равны нулю; в противном случае она называется неоднородной.

Решением системы называется упорядоченная совокупность чисел такая, что после замены неизвестных соответственно числами каждое уравнение системы превращается в верное числовое равенство.

Система называется совместной, если она имеет хотя бы одно решение. Если система не имеет ни одного решения, то она называется несовместной.

Две системы уравнений называются эквивалентными, если множество их решений совпадают

Вопрос 44. Матрица системы линейных уравнений, матричная форма записи системы

Исходную Системой линейных алгебраических уравнений можно записать в матричном виде:

,

где матрица называется матрицей системы, это матрица, составленная из коэффициентов при неизвестных; — вектором-столбцом неизвестных, — вектором-столбцом правых частей или свободных коэффициентов.

Вопрос 45. Правило Крамера

Системой однородных линейных уравнений называется система вида

Ясно, что в этой случае , т.к. все элементы одного из столбцов в этих определителях равны нулю.

Так как неизвестные находятся по формулам , то в случае, когда Δ ≠ 0, система имеет единственное нулевое решение x = y = z = 0. Однако, во многих задачах интересен вопрос о том, имеет ли однородная система решения отличные от нулевого.

Вопрос 46. Минор к-ого порядка, ранг матрицы, базисный минор

Определитель, который образован элементами матрицы, стоящими на пересечении произвольно выбранных k строк и k столбцов, называется минором k-го порядкаэтой матрицы ( при этом минор 1-го порядка – это произвольный элемент данной матрицы).

Рангом матрицыназывается наивысший порядок ее миноров, отличных от нуля (ранг нулевой матрицы полагается равным нулю). Ранг матрицы А обозначается символомr(А).

Всякий неравный нулю минор, порядок которого равен рангу матрицы, называется ее базисным минором.

Вопрос 47. Элементарные преобразования над матрицами

Элементарными преобразованиями матрицы называются следующие 4 операции:

  1. перестановка двух строк (столбцов)

  2. умножение строки (столбца) на число, неравное нулю

  3. прибавление к строке (столбцу) другой строки ( другого столбца), умноженной (умноженного) на любое число

  4. отбрасывание нулевой строки (нулевого столбца)

Вопрос 48. Теорема об элементарных преобразованиях

Ранг матрицы не меняется при ее элементарных преобразованиях.

Вопрос 49. Теорема Кронекера-Капелли

Теорема Кронекера-Капелли. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.

Система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Вопрос 50. Условия существования ненулевого решения у однородной системы mхn и системы nхn

Условия существования ненулевого решения у однородной системы mхn:однородная система mхn имеет ненулевое решение тогда и только тогда, когда ранг матрицы системы меньше числа неизвестных.

Условия существования ненулевого решения у однородной системы nхn:однородная система nхn имеет ненулевое решение тогда и только тогда, когда определитель системы равен нулю.

Вопрос 51. Изображение на числовой оси множеств действительных чисел, заданных равенством и неравенством

52. Модуль действительного числа и его свойства

Модулем неотрицательного действительного числа х называют само это число: | х | = х; модулем отрицательного действительного числа х называют противоположное число: I х | = — х.

INCLUDEPICTURE «http://school.xvatit.com/images/f/f3/14-06-125.jpg» \* MERGEFORMATINET

1. |а| 0.

2.|аb| =|a| |b|.

INCLUDEPICTURE «http://school.xvatit.com/images/b/b2/14-06-127.jpg» \* MERGEFORMATINET

53. Геометрический смысл модуля числа и модуля разности двух чисел

Геометрический смысл – расстояние от точки с координатой Х на числовой прямой до начала координат.

Модуль разности – расстояние между соответствующими точками на числовой прямой.

54. Определение функции, определение графика функции

Функция (отображение, оператор, преобразование) — математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция — это «закон», по которому каждому элементу одного множества (называемого областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

График функции — понятие в математике, которое даёт представление о геометрическом образе функции.

В этом случае, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией: точка располагается (или находится) на графике функции тогда и только тогда, когда INCLUDEPICTURE «http://upload.wikimedia.org/math/7/c/1/7c1c9491ba7c6e8d6d2cfa82e39b22ca.png» \* MERGEFORMATINET

Однородные системы линейных уравнений

Системы линейных уравнений, у которой все свободные члены равны нулю, называются однородными:

Любая однородная система всегда совместна, поскольку всегда обладает нулевым (тривиальным) решением. Возникает вопрос, при каких условиях однородная система будет иметь нетривиальное решение.

Теорема 5.2. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг основной матрицы меньше числа ее неизвестных.

Следствие. Квадратная однородная система имеет нетривиальное решение тогда и только тогда, когда определитель основной матрицы системы не равен нулю.

Пример 5.6. Определить значения параметра l, при которых система имеет нетривиальные решения, и найти эти решения:

Решение. Эта система будет иметь нетривиальное решение тогда, когда определитель основной матрицы равен нулю:

При l=2 ранг основной матрицы системы равен 2. Тогда, выбирая в качестве базисного минор:

получим упрощенную систему

Отсюда находим, что x=z/4, y=z/2. Полагая z=4a, получим

à

Множество всех решений однородной системы обладает весьма важным линейным свойством: если столбцы X1 и X2 – решения однородной системы AX = 0, то всякая их линейная комбинация aX1 + bX2 также будет решением этой системы. Действительно, поскольку AX1 = 0 и AX2 = 0, то A (aX1 + bX2) = aAX1 + bAX2 = a · 0 + b · 0 = 0. Именно вследствие этого свойства, если линейная система имеет более одного решения, то этих решений будет бесконечно много.

Линейно независимые столбцы E1, E2, Ek, являющиеся решениями однородной системы, называется фундаментальной системой решений однородной системы линейных уравнений, если общее решение этой системы можно записать в виде линейной комбинации этих столбцов:

.

Если однородная система имеет n переменных, а ранг основной матрицы системы равен r, то k = n–r.

Пример 5.7. Найти фундаментальную систему решений следующей системы линейных уравнений:

Решение. Найдем ранг основной матрицы системы:

Таким образом, множество решений данной системы уравнений образует линейное подпространство размерности n – r = 5 – 2 = 3. Выберем в качестве базисного минор

Тогда оставляя только базисные уравнения (остальные будут линейной комбинацией этих уравнений) и базисные переменные (осталь­ные, так называемые свободные, переменные переносим вправо), по­лучим упрощенную систему уравнений:

Полагая, x3 = a, x4 = b, x5 = c, находим

, .

, , .

С использованием фундаментальной системы общее решение однородной системы можно записать в виде

X = aE1 + bE2 + cE3. à

Отметим некоторые свойства решений неоднородной системы линейных уравнений AX=B и их взаимосвязь соответствующей однородной системой уравнений AX = 0.

Общее решение неоднородной системы равно сумме общего решения соответствующей однородной системы AX = 0 и произвольного частного решения неоднородной системы. Действительно, пусть Y0 произвольное частное решение неоднородной системы, т.е. AY0 = B, и Y – общее решение неоднородной системы, т.е. AY = B. Вычитая одно равенство из другого, получим
A(Y–Y0) = 0, т.е. Y – Y0 есть общее решение соответствующей однородной системы AX=0. Следовательно, Y – Y0 = X, или Y = Y0 + X. Что и требовалось доказать.

Пусть неоднородная система имеет вид AX = B1 + B2. Тогда общее решение такой системы можно записать в виде X = X1 + X2, где AX1 = B1 и AX2 = B2. Это свойство выражает универсальное свойство вообще любых линейных систем (алгебраических, дифференциальных, функциональных и т.д.). В физике это свойство называется принципом суперпозиции, в электро- и радиотехнике – принципом наложения. Например, в теории линейных электрических цепей ток в любом контуре может быть получен как алгебраическая сумма токов, вызываемых каждым источником энергии в отдельности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *