Стадии биотехнологического процесса

Содержание

Биотехнологический процесс

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Пензенский государственный университет

Кафедра «Общая биология и биохимия»

Направление подготовки — 06.03.01 Биология

Профиль подготовки — Биохимия

Реферат

по дисциплине «Введение в биотехнологию»

на тему: «Биотехнологический процесс»

Выполнил студент: Шишкина Мария Игоревна

Проверил: Д.б.н., профессор

Соловьёв Владимир Борисович

Пенза, 2017

Введение

В широком смысле «биотехнология» — использование живых организмов и биологических процессов, а также способов их изменения для более полного удовлетворения человеческих потребностей.

В первую очередь отличие заключается в том, что в биотехнологии используют более сложную организацию материи — биологическую, в частности клетки микроорганизмов, тканевые культуры животных и растений, а так же ферменты и др.

1. Биотехнологический процесс

Первым детально изученным процессом было брожение. Французский ученый Луи Пастер (1822 — 1895) первым показал, что брожение — это жизнь без свободного кислорода или анаэробное дыхание, происходящее при участии дрожжевых грибов.

2) Биотехнологическое производство чаще базируется на использовании стандартного однотипного оборудования. Однотипные ферменты применяются для производства аминокислот, витаминов; ферментов, антибиотиков.

2. Принципы и классификация биотехнологических процессов

2. Принцип целесообразного уровня технологических разработок.

Научные знания позволяют заранее провести расчет параметров среды, конструкции биореактора и режима его работ.

Как пример — использование в биотехнологических процессах энергии Солнца, естественных биореакторов — природных водоёмов — вместо рукотворных аппаратов, в частности, для получения биомассы одноклеточных водорослей.

— биотрансформация — видоизменения какой-либо молекулы, превращение одного продукта в другой. Такой процесс имеет место при получении стероидных гормонов, фитобиотехнологическом процессе получения дигоксина;

По организации материальных потоков:

Периодический БТ процесс достаточно прост и довольно часто употребляем. Однако его нельзя считать оптимальным. При периодическом процессе единовременно загружают в реактор все компоненты питательной среды и посевной материал.

Затем совершается полный цикл ферментации. Таким образом какой-либо коррекции условий биосинтеза во время ферментационного цикла не выполняется: нет ни постоянного поддержания оптимального соотношения источников углерода, азота, фосфора, ни добавления в нужный момент предшественников целевого продукта, ни сохранения оптимального значения рН и т.п. Все это сказывается на продуктивности ферментации. Выход целевого продукта снижается.

Полупериодический (регулярный) процесс по сравнению с периодическим более прогрессивен. Улучшаются рост продуцента и биосинтез целевого продукта, появляются возможности коррекции процесса при его отклонениях от оптимальных условий.

Непрерывный процесс ферментации заключается в том, что из реактора непрерывно отбирают небольшие порции культуральной жидкости и одновременно в него же вносят такой же объем питательной среды. Система оказывается проточной. Использование непрерывного процесса целесообразно, например, в том случае, если целевым продуктом является непосредственно сама биомасса выращиваемого микроорганизма.

Отъемно-доливной БТ процесс является промежуточным между периодическим и непрерывным. Культуральная жидкость отбирается более крупными порциями, чем в непрерывном процессе.

По характеру культивирования:

Глубинный БТ процесс.

Посевной материал вносят в количестве от 5 до 20% от объема используемой среды. Это делает процесс высокоэффективным. Накапливается большое количество целевого продукта.

Двухступенчатые БТ процессы — это постепенное наращивание биообъекта в возрастающем количестве на питательной среде и перенос его в другой биореактор для биосинтеза целевого продукта.

В общем виде любой биотехнологический процесс включает три основные стадии: предферментационную, ферментационную и постферментационную.

3.1 Предферментационная стадия.

Транспорт веществ осуществляется насосами, ленточными и шнековыми транспортерами. Сыпучие компоненты подают в ферментеры с помощью вакуумных насосов.

Поэтому источники углерода вводят непосредственно перед засевом или отдельные компоненты среды вводят по мере потребления их культурой.

Поддержание чистой культуры штамма-продуцента — ключевая задача любого биотехнологического производства.

Асептика — это комплекс мероприятий, направленных на предотвращение попадания в среду или на объект посторонних микроорганизмов.

— посторонние микроорганизмы-контаминанты потребляют компоненты питательных веществ и при этом выделяют метаболиты, тормозящие рост основной культуры;

Стерилизация всех компонентов биотехнологического процесса, соприкасающимися с чистыми культурами микроорганизмов — важнейший этап биотехнологического производства.

Химическую стерилизацию применяют для тех элементов оборудования, которые не выдерживают нагревания до 110 — 130 єС (например, датчики, фильтры воздуха и т.п.).

Очистка отработанного воздуха

Одним из важнейших мероприятий, снижающих выброс микроорганизмов в окружающую среду, является герметизация ферментеров, флотаторов и оборудования узла сепарации.

Является основной стадией в биотехнологическом процессе, так как в ее ходе происходит взаимодействие продуцента с субстратом и образование целевых продуктов (биомасс, эндо- и экзопродуктов).

Культивирование биологических объектов может осуществляться в периодическом и проточном режимах, полунепрерывно с подпиткой субстратом.

Рисунок 1. Кривая роста микроорганизмов в ходе периодической ферментации: 1 — лаг-фаза; 2 — фаза экспоненциального роста; 3 — фаза линейного роста; 4 — фаза замедления роста; 5 — стационарная фаза; 6 -фаза отмирания

Биотехнологическая стадия

1. Ферментация — процесс, осуществляемый с помощью культивирования микроорганизмов.

3. Биокатализ — химические превращения вещества, которые протекают с использованием биокатализаторов — ферментов.

6. Биокомпостирование — снижение содержания вредных органических веществ микроорганизмами в твердых отходах, которым придана специальная взрыхленная структура для обеспечения доступа воздуха и равномерного увлажнения.

9. Биодеградация — деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.

2 группа — первичные метаболиты — это низкомолекулярные соединения, необходи-мые для роста микроорганизмов в качестве строительных блоков макромолекул, ко-ферментов (аминокислоты, витамины, органические кислоты);

Чаще всего целевой продукт находится либо в самой биомассе, либо в жидкости. В обоих случаях необходимо сначала разделить эти две фазы. В зависимости от свойств биомассы и жидкости для этих целей могут быть использованы различные процессы.

Сепарация, центрифугирование — разделение под действием центробежных сил. Наиболее часто используется для отделения дрожжей или бактерий в производстве кормовой биомассы.

Коагуляция — добавление в суспензию реагентов, пособствующих образованию и осаждению более крупных клеточных агломератов и отделению их от жидкости путем отстаивания.

3.3 Постферментационная стадия

Наиболее распространенный для этих целей метод — сепарация, осуществляемая в специальных аппаратах — сепараторах, которые работают по различным схемам в зависимости от свойств обрабатываемой культуральной жидкости.

Для увеличения сроков годности биотехнологических продуктов производят их обезвоживание и стабилизацию.

Очитка продукта

Эта задача решается с помощью разнообразных процессов, в числе которых многие из тех, что уже были рассмотрены ранее. Это экстракция и экстрагирование, адсорбция, ионный обмен, ультрафильтрация и обратный осмос, ректификация и ферментолиз.

Еще более чистый продукт можно получить, если кристаллы растворить в воде или растворителе, а потом снова кристаллизовать (т.е. провести процесс перекристаллизации).

После очистки продукта он часто находится в растворе с небольшими концентрациями примесей. Дальнейшая задача — обеспечить его концентрирование.

Получение готовой формы продукта

Современные биотехнологии также остро нуждаются в научно обоснованной проработке технологии и аппаратурном оформлении.

Список использованной литературы

1. Введение в биотехнологию / Т.Г. Волова. — Красноярск: ИПК СФУ, 2008. — 183 с.

2. Основы биотехнологии / Е.А. Фауст. — Саратов, 2015. — 52 с.

Типовая схема и основные стадии биотехнологических производств

Биотехнологическим процессом называют синтез какого — либо вещества (биотехнологического продукта) при непосредственном участии живых микроорганизмов и выделенных из них ферментов — биологических катализаторов.
Основными особенностями и отличиями биотехнологического процесса являются: участие микроорганизмов, сложный состав реакционной среды, сложный механизм реакции и длительность её протекания, чувствительность к внешним условиям (стерильности, давлению, температуре и т. п.).
Биотехнологические продукты получают по индивидуальным технологиям со своими агентами, сырьём, количеством стадий, технологическими режимами. Тем не менее можно выделить схему, типовую для данных производств. Общий вид её приведён на рис. 4.

Рис. 4. Типовая схема биотехнологических производств
Основной в этой схеме является биотехнологическая стадия, главная задача которой — получение определённого органического вещества. Она включает в себя ряд следующих биологических процессов, с помощью которых сырьё превращается в тот или иной конечный продукт (см. рис. 4).
Ферментация — особый класс химических превращений вещества, состоящий из серии взаимосвязанных реакций синтеза и разложения, протекающих в органических веществах под воздействием ферментов. Ферменты, таким образом, представляют собой универсальные биологические катализаторы, имеющие сложный состав.
Биотрансформация — процесс изменения химической структуры вещества под действием ферментов или ферментативной активности клеток микроорганизмов.
Биокатализ — химические превращения вещества, протекающие с использованием биокатализаторов — ферментов.
Биоокисление — потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.
Метановое брожение — переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.
Биокомпостирование — снижение содержания вредных органических веществ ассоциацией микроорганизмов в твёрдых отходах, которым придана специальная взрыхлённая структура для обеспечения доступа воздуха и равномерного увлажнения.
Биосорбция — сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закреплёнными на специальных твёрдых носителях.
Бактериальное выщелачивание — процесс перевода нерастворимых в воде соединений металлов в растворённое состояние под действием специальных микроорганизмов.
Биодеградация — деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.
Подготовительные стадии служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии. Здесь используют следующие процессы: приготовление среды, её стерилизацию, подготовку посевного материала и биокатализатора, предварительную обработку сырья.
Разделение жидкости и биомассы в зависимости от их свойств осуществляют различными способами, отличающимися движущей силой процесса:

  • отстаивание — разделение под действием сил гравитации (при очистке сточных вод);
  • фильтрация — пропускание суспензии через фильтрующий материал под действием разности давлений с целью задержки биомассы на поверхности материала. С помощью микро- или ультрафильтрации получают раствор, свободный от взвешенных клеток биомассы;
  • сепарация или центрифугирование — разделение под действием центробежных сил. Таким способом отделяют, например, дрожжи при получении кормовой биомассы;
  • флотация — выделение биомассы из её пенной фракции;
  • коагуляция — отделение твёрдых веществ от жидкости путем их осаждения в виде крупных агломератов и последующего их отстаивания.

Выделение продуктов биосинтеза, очистка и концентрирование продукта являются вспомогательными процессами для получения продукта в готовой форме. Некоторые отличия имеются только на стадии выделения продуктов биосинтеза для внутри- и внеклеточных продуктов. Так, для внутриклеточных продуктов необходимо разрушить клеточную оболочку одним из методов- дезинтеграцией клеток, гидролизом, ферментолизом, автолизом и т. д.

Дезинтеграция клеток осуществляется физическими (ультразвук замораживание, декомпрессия и т. п.), химическими и биотехнологическими методами.
Гидролиз — разрушение клеточных оболочек под действием химических реагентов и температуры.
Ферментолиз — разрушение клеточных оболочек под действием ферментов при повышенной температуре.
Автолиз — разновидность ферментолиза, когда используются собственные ферментные клетки.
Общими для выделения внутри- и внеклеточных продуктов являются экстракция осаждение, адсорбция, ионный обмен, отгонка, ректификация ультрарование и нанофильтрация, обратный осмос, центрифугирование, ультрацентрифугирование.
Экстракция — переход целевого продукта из водной фазы в несмешивающуюся с водой органическую жидкость (экстрагент). Экстракция прямо из твердой фазы, в том числе и биомассы организмов, называется экстрагированием.
Осаждение — выделение целевого продукта путём добавления к жидкости реагента, взаимодействующего с растворённым продуктом и переводящего его в твердую фазу.
Адсорбция — перевод растворенного в жидкости продукта в твёрдую фазу путём его поглощения твёрдым носителем — сорбентом.
Ионный обмен сходен с адсорбцией, но в этом случае в твёрдую фазу переходят ионы (катионы или анионы), а не целиком молекула целевого продукта или примеси.
Отгонка, ректификация используются для выделения растворённых в культуральной жидкости легкокипящих продуктов, например, этилового спирта.
Ультрафильтрация, нанофильтрация, обратный осмос применяются для выделения высокомолекулярных соединений (белков, полипептидов, полинук-леотидов). Обратный осмос и нанофильтрация позволяют отделить даже небольшие по размеру молекулы.
Центрифугирование, ультрацентрифугирование используют для выделения вирусов, клеточных органелл, высокомолекулярных соединений.
Очистка продукта осуществляется с использованием разнообразных процессов, в числе которых экстракция, хроматография, диализ, ультрафильтрация, обратный осмос. На стадии концентрирования применяют выпаривание, сушку, осаждение, кристаллизацию, ультра-, гипер- или нанофильтрацию, обеспечивающие «отжим» растворителя из раствора.
Хроматография используется для разделения смесей веществ, часто очень близких по строению. Процесс проводят в специальных хроматографических колонках, заполненных твердым сорбентом. Все вещества сначала адсорбируются на этом сорбенте. Десорбция же разных по молекулярной массе соединений проходит с разной скоростью, что позволяет разделять и очищать их друг от друга, используя подходящий растворитель.
Диализ используется для разделения смесей низко- и высокомолекулярных соединений. Процесс основан на способности низкомолекулярных веществ проходить через мембрану, являющуюся непроницаемой для высокомолекулярных соединений. Таким путём осуществляют очистку вакцин и ферментов от солей и низкомолекулярных растворимых примесей.
Кристаллизация — процесс, основанный на различной растворимости веществ при разных температурах. Как правило, в ходе этого процесса выделяют твердые целевые продукты, а примеси остаются в маточном растворе. Так, например, получают кристаллы пенициллина.
В зависимости от места, которое занимают биотехнологические продукты в типовой технологической схеме, они могут представлять собой: 1) газы со стадии ферментации (примеры — углекислый газ, биогаз); 2) среду ферментации — кулыпуральную жидкость вместе с микроорганизмами (пример — кефир) или твердый субстрат (пример — сыр); 3) концентрат культуральной жидкости (пример — кормовой лизин); 4) жидкость, полученную после отделения биомассы от культуральной жидкости (пример — квас, пиво); 5) инактивированную биомассу (пример — кормовые дрожжи); 6) жизнеспособную биомассу — биопрепарат (пример — пекарские дрожжи, силосные закваски); 7) ослабленную биомассу (пример — живые вакцины); 8) очищенный поток жидкости при очистке сточных вод и т.д.
С.В. Макаров, Т.Е. Никифорова, Н.А. Козлов

Опубликовал Константин Моканов

Основные технологические стадии биотехнологического процесса

⇐ ПредыдущаяСтр 8 из 16

Форма проведения лекции:лекция-консультация

План лекции

1. Приготовление посевного материала.

2. Культивирование микроорганизмов.

3. Кривая роста микроорганизмов.

1. В технологическом процессе используются полезные свойства штамма, следовательно, необходимо сохранять и, если возможно, улучшать его производственные качества. Поэтому в биотехнологическом производстве имеется отделение чистой культуры, в задачей которого является постоянное и надежное воспроизведение полезных свойств продуцента, найденных или достигнутых в свое время в ходе лабораторных исследований. Такое отделение проводит лабораторные операции по контролю и сохранению чистой культуры, а также маломасштабное культивирование для постоянной передачи штамма на стадию ферментации.

Фактически это микробиологическая лаборатория, с музеем штаммов-продуцентов. В ходе контрольных высевов и маломасштабных ферментаций (в пробирках, колбах и т. д.) контролируется устойчивость всех имевшихся или приобретенных признаков, послуживших основанием для рекомендации к промышленному применению этих культур. По мере необходимости из отделения чистой культуры поступает заданная масса инокулята, идущая в производство.

При периодическом процессе культивирования (при производстве метаболитов) в отделении чистой культуры готовят засевную дозу клеток для каждой из операций основного производства. При непрерывном производстве кормового белка этого не требуется, однако для повышения качества продукта предпочитают время от времени вводить клетки штамма-продуцента из отделения чистой культуры. Для этого в отделении имеется ферментационная часть, где производится выращивание достаточно крупных партий микроорганизма продуцента.

Посевные дозы выращиваются последовательно в колбах и бутылях на 10-20 литров, находящихся на качалках или просто в термостатируемом помещении, и далее в последовательности ферментеров объемом (по необходимости) 10, 100, 500 и 1000 литров, в которых осуществляется перемешивание, аэрация и термостатирование культуральной жидкости с клетками.

Отделение чистой культуры должно иметь достаточно большую коллекцию штаммов продуцентов, так как возможны временные переходы с одного штамма на другой, вызванные различными причинами. Например, сезонные изменения температуры частично компенсируются подбором достаточно продуктивных термотолерантных штаммов. Кроме того, микробиологическая промышленность зачастую вынуждена использовать в качестве компонентов питательных сред отходы сельского хозяйства и пищевой промышленности (меласса, кукурузный экстракт), что ведет к сезонным изменениям сырья и предполагает адаптацию продуцента к особенностям среды. Все это делает роль микробиологической службы производства достаточно высокой.

2. Основным методом биотехнологии является культивирование, то есть выращивание микроорганизмов в специально созданных условиях.

Культивирование бывает: поверхностное, глубинное.

Поверхностное культивирование ведут в специальных растительных камерах, глубинное культивирование проводят в ферментерах (это аппарат, который заполнен жидкой питательной средой).

По способу организации, культивирование бывает: периодическое, непрерывное.

Также культивирование бывает: аэробным и анаэробным.

Из множества существующих организмов в промышленности используются только чистые культуры, часто селекционированные или получаемые методом генной инженерии, их называют продуцентами. Они дают нужный продукт в максимальном количестве.

Микроорганизмы должны расти на дешёвых и доступных питательных средах. Конверсия питательной среды в биомассу или в нужный продукт должна быть максимальной. Выражается это понятие экономическим коэффициентом:

(1)

где ∆x- количество выросшей биомассы,

∆s-количество потреблённой питательной среды

Микроорганизмы должны расти с максимально- высокой скоростью роста:

(2)

где ∆τ- скорость роста.

(3)

где μ — удельная скорость роста.

Культивирование клеток в жидкой среде осуществляется несколькими способами. Наиболее простым и распространенным является накопительное или периодическое культивирование. Клетки растут в постоянном объеме питательной среды на установках качального или роллерного типа. Такая система закрыта для всего, кроме газов и летучих продуктов метаболизма. Оказывается при этом в колбах накапливается значительное количество углекислого газа. После замедления роста суспензия разводится до начальной плотности, и цикл выращивания повторяется. Цикл выращивания — это период от помещения инокулюма в свежую среду до следующего субкультивирования. Для накопительных культур чаще всего используются конические широкогорлые колбы разных размеров на платформенных качалках кругового или полукругового типа со скоростью вращения 60-120 оборотов в минуту. Клетки растений, несмотря на ряд специфических особенностей, подчиняются тем же законам роста, что и микроорганизмы, поэтому для их выращивания применяют технологию и аппаратуру, принятую в работе с микроорганизмами. Микроорганизмы обычно культивируют в особых аппаратах, называемых ферментерами. Накопительные культуры можно выращивать в лабораторных ферментерах рабочим объемом 0,5-10 л. По сравнению с глубинным выращиванием в колбах на качалке при культивировании клеток в ферментерах появляются принципиально новые возможности, связанные с их конструкцией.

На культуру клеток в ферментерах можно в любой момент воздействовать различными факторами (температура, свет, газовый режим, физиологически активные вещества, рН и др.) и отбирать пробы клеток для определения динамики роста и метаболизма популяции в цикле выращивания. То есть, не нарушая режима асептики, можно контролировать рост и продуктивность биомассы, изучать влияние на эти процессы различных воздействий. Вместе с тем культивирование растительных клеток в ферментерах сопряжено с трудностями, вытекающими из специфических особенностей клеток высших растений. Наличие вакуоли и целлюлозно-пектиновой оболочки, придающей клеткам не только прочность, но и хрупкость, обуславливает их подверженность механическому стрессу при перемешивании и аэрации. Опасность механического стресса усиливается на стадии растяжения клеток.

Ферментеры различных конструкций обеспечивают перемешивание и аэрацию по-разному: вращаясь вокруг собственной оси, будучи в наклонном состоянии, перемешиванием магнитными и механическими мешалками, продуванием сжатого стерильного воздуха через суспензию. Конструкция лопастей мешалок бывает разной, и вращаются они с разной скоростью.

Высокая скорость перемешивания ведет к разрушению клеток, снижение интенсивности перемешивания может привести к оседанию части клеток к их гибели. Рост биомассы, которого так стараются добиться в работе ученые, ведет к возрастанию вязкости, что так осложняет культивирование. В отличие от микроорганизмов растительные клетки слипаются между собой и с поверхностями культиватора. Кроме того, они могут скапливаться в верхней части сосуда, образуя пену. Перечисленные особенности растительных клеток заставляют исследователей очень тщательно подходить к выбору типа культиваторов и режиму перемешивания в зависимости от целей и задач экспериментов с суспензионной культурой.

Способ, при котором клетки выращиваются в проточном режиме, называется непрерывным культивированием. В основу создания проточных систем легли опыты, в которых было обнаружено, что добавление в суспензию в фазу экспоненциального роста культуры порций свежей питательной среды позволяет долго поддерживать деление клеток. Непрерывное культивирование может осуществляться в закрытой проточной, полупроточной и открытой проточной системах.

В закрытой проточной системе суспензионная культура непрерывно снабжается свежей средой, приток которой сбалансирован оттоком равного количества использованной среды. В такой системе хорошо изучать влияние различных факторов на метаболизм клеток.

При полупроточном режиме выращивания определенная часть суспензии время от времени отбирается и оставшаяся часть разбавляется свежей средой.

Применяется для получения большой биомассы с целью ее биохимического исследования.

Открытая проточная система устроена так, что обеспечивает баланс между притоком свежей питательной среды и удалением равного объема клеточной суспензии. Скорость удаления части клеток из системы должна соответствовать скорости образования новых клеток в результате деления, это создает равновесное состояние между ростом клеток (постоянством скорости клеточного деления) и биосинтезом (постоянством состава и метаболической активности).

В открытой проточной системе исследуются взаимосвязи между процессами роста и метаболизма, те изменения, которые происходят при переходе клеток от одного состояния к другому, а также условия оптимального режима культивирования для получения максимального количества вторичных метаболитов. В основу непрерывного культивирования могут быть положены принципы хемостата и турбидостата, разработанные при культивировании микроорганизмов (рис. 4).

В хемостатном режиме непрерывное культивирование идет под воздействием лимитирующего рост фактора. Хемостатная культура представляет собой перемешиваемую суспензию, в которую с постоянной скоростью поддается свежая среда с заданной концентрацией какого-то лимитирующего рост компонента и с такой же скоростью отбирается часть культуры. Общий объем суспензии остается постоянным. При выращивании клеточных суспензий в хемостатном режиме скорость размножения клеток регулируется концентрацией лимитирующего фактора. Скорость роста и плотность клеточной популяции проходят в соответствии с заданной скоростью поступления среды (скорость разбавления), т.е. подачей лимитирующего фактора и других компонентов среды. Это приводит популяцию в стационарное состояние, для которого характерны выравненность физиологического состояния, постоянства концентрации лимитирующего фактора и других компонентов среды.

А – хемостат; Б – турбидостат с автоматической регуляцией оптической

плотности.
1 – поступление среды, 2 – мешалка, 3 – сток культуры, 4 – насос,

5 – фотоэлемент, 6 – источник света

Рисунок 4. Схемы биореакторов для проточного культивирования

микроорганизмов

Принцип турбидостата предусматривает непрерывное культивирование без внешнего лимитирования, рост клеток популяции поддерживается на определенном уровне регулированием оптической плотности культуры. Для этого подходят суспензии с низкой плотностью клеток и высокой удельной скоростью роста, т.е. популяции в начальные фазы роста. Турбидостат представляет собой хемостат, дополненный фотоэлектрическим элементом, чувствительным к мутности культуры. Рост клеточной популяции поддерживается на заданном уровне автоматически с помощью фотометрической регуляции подачи среды.

Хемостатный и турбидостатный режимы применяют с целью стабилизации клеточной популяции в определенном состоянии роста и поддержания его неограниченное время. Эти приемы культивирования очень ценны для изучения регуляции роста и метаболизма клеток в строго стандартных условиях под влиянием различных лимитирующих и ингибирующих факторов. Однако, таких работ очень мало, что связано с новизной метода и техническими трудностями. Препятствием к культивированию клеток высших растений в проточном режиме является их высокая чувствительность к повреждениям, агрегированность, длительное время генерации.

3. Рост клеток описывается S-образной кривой. Она получается, если число клеток в культуре или их массу представить как функцию времени, прошедшего с момента их высева (рис. 5). Кривая характерна для популяции клеток, культивируемых как поверхностным способом, так и в жидкой среде, и состоит из следующих фаз: 1) латентная фаза, или лаг-фаза, во время которой отсутствует видимый рост, но идет активный процесс поглощения воды, питательных веществ и подготовки к делению; 2) экспоненциальная, или логарифмическая, фаза роста, в которой по любому принятому критерию возрастает удельная скорость роста; 3) линейная фаза — очень короткая, удельная скорость роста в этой фазе постоянная; 4) фаза замедления роста, в которой скорость роста уменьшается; 5) стационарная фаза, в которой по любому принятому критерию рост постоянен; 6) фаза гибели клетки. Однако форма реальных ростовых кривых может значительно отличаться от моделей продолжительностью фаз. Это зависит как от генотипа, так и от условий выращивания и количества инокулюма и транспланта.

Рисунок 5. Кривая ростового цикла клеток in vitro

Контрольные вопросы

1. Основные стадии и показатели роста микроорганизмов

2. Периодическое и непрерывное культивирование

3. Хемостат, турбидостат, оксистат

4. Стадии разработки биотехнологического производства

Лекция 11

Аппаратурное оформление биотехнологического процесса

Форма проведения лекции:лекция-конференция

План лекции

1. Аппаратурное оформление биотехнологического процесса. Биореакторы.

2. Повышение эффективности ферментации

1. Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса.

Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента — главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами. Третья стадия — стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

Заключительная стадия биотехнологического производства — приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными. Далее приводится характеристики каждой из стадий промышленного микробиологического синтеза.

Технологическое оформление процессов промышленной биотехнологии в значительной мере определяется отношением микроорганизма-продуцента к кислороду. При использовании аэробных культур ферментационное оборудование и нормы технологического режима подбираются таким образом, чтобы массообмен (перенос кислорода из газовой в жидкую фазу) обеспечивал поступление кислорода к клеткам в количествах, необходимых и оптимальных для данной культуры в данной фазе роста.

Промышленное использование факультативных анаэробов не ставит задачи абсолютного исключения кислорода из среды, поэтому процессы этого типа (брожение) технологически проще аэробных. В начальной фазе этих процессов требуется лишь удалить кислород из газовой фазы над культуральной жидкостью, что может быть достигнуто введением инертного газа или просто вытеснением воздуха углекислотой, выделяемой клетками при метаболизме (рис. 6).

Технологическое оформление строго анаэробных процессов сложнее, чем для процессов брожения, так как в этом случае необходимо полностью исключить возможность попадания кислорода в газовую, а оттуда и в жидкую среду.

Вопросы термостатирования ферментационного процесса (подвода или отвода тепла в ходе ферментации) являются очень острыми в целом ряде производств биотехнологии. В аэробных условиях микробиологический синтез протекает со значительным тепловыделением, что вызывает необходимость отвода тепла из аппаратов большого объема (сотни и тысячи кубометров). Технологические требования к скорости теплоотвода очень жесткие из-за узкого температурного оптимума роста культуры. Наиболее приемлемый на практике способ теплоотвода — охлаждение водой через змеевики, рубашки и др. устройства — осложняется небольшой разностью температур между содержимым биореактора (32-34оС для дрожжей Candida) и охлаждающей водой (20оС), температура которой в жаркое время года еще выше. Поэтому в реакторе создается развитая поверхность газообмена, увеличивается скорость движения жидкостей и т.д.

Рис. 6. Устройство ферментера

Важно также поддерживать определенный состав питательной среды. В непрерывных процессах биосинтеза задача технолога сводится к поддержанию концентрации всех питательных веществ (и кислорода) и дозированному введению кислоты или щелочи для рН-статирования системы на заданном уровне. Простейшим вариантом управления стадией ферментации в периодическом режиме является изменение концентраций компонентов среды и её рН, а также введение необходимых добавок по заранее разработанной программе, реализуемой технологом в каждом цикле ферментации. Этот способ относительно прост и легко поддается автоматизации.

Во многих случаях необходимо возможно полно исчерпывать компоненты питательной среды, чтобы они не попадали на последующие стадии переработки. Эта необходимость может быть вызвана рядом причин:

— дороговизна или дефицитность субстрата;

— вредное воздействие субстрата на качество готового продукта(например, при производстве дрожжей на парафинах , когда выделение остаточных количеств углеводородов из клеточной массы затруднено, поэтому добавляют дополнительные секции для дозревания или утилизации запасенных в цитоплазме углеводородов);

— затруднения, возникающие на стадии выделения и очистки метаболитов при одновременном присутствии в культуральной жидкости неутилизированных веществ.

2. Стадия ферментации — центральная среди этапов промышленного производства. Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и термостатированную среду инокулята до завершения процессов роста, биосинтеза или биотрансформации.

Ферментация проходит в специальных емкостях, называемых ферментерами или биореакторами. Конструкция биореактора приведена на рис. 5. Основными элементами ферментера являются двойные стенки, промежуток между которыми заполняется охлаждающей или нагревающей жидкостью, входные отверстия для газовых и жидких потоков, система контроля за составом питательной среды и условиями внутри реактора.

Поскольку в промышленной биотехнологии выделяют 2 типа процессов — накопление биомассы и накопление ценных веществ, возникающих в ходе роста и последующего развития культуры, то меняется и характер построения производства во времени. Биомасса одноклеточных выращивается непрерывным способом в аппаратах хемостатного типа, а все процессы второй группы осуществляются периодически, когда в одном и том же аппарате в производственном цикле протекают все необходимые фазы развития клеток и биосинтеза. Процессы двух рассматриваемых типов отличаются по требованиям к степени асептики, что связано с их объёмами — белок одноклеточных выпускается миллионами тонн сухого вещества, а выпуск продуктов второго типа составляет, как максимум, тысячи или десятки тысяч тонн. Поэтому в производстве белковых веществ ограничиваются достаточно высокой, но не 100% степенью асептики, обеспечивая последнюю подбором режима культивирования, подходящего для продуцента, но неблагоприятного для возможных примесных штаммов.

Контрольные вопросы

Элементы и стадии биотехнологического процесса

В общем виде любой биотехнологический процесс включает три основные стадии: предферментационную, ферментационную и постферментационную.

На предферментационной стадии осуществляют хранение и подготовку культуры продуцента (инокулята), получение и подготовку питательных субстратов и сред, ферментационной аппаратуры, технологической и рециркулируемой воды и воздуха. Поддержание и подготовка чистой культуры является очень важным моментом предферментационной стадии, так как продуцент, его физиолого-биохимические характеристики и свойства определяют эффективность всего биотехнологического процесса. В отделении чистой культуры осуществляют хранение производственных штаммов и обеспечивают их реактивацию и наработку инокулята в количествах, требуемых для начала процесса. При выращивании посевных доз инокулята применяют принцип масштабирования, то есть проводят последовательное наращивание биомассы продуцента в колбах, бутылях, далее в серии ферментеров. Каждый последующий этап данного процесса отличается по объему от предыдущего обычно на порядок. Полученный инокулят по стерильной посевной линии направляется далее в аппарат, в котором реализуется ферментационная стадия. Приготовление питательных сред осуществляется в специальных реакторах, оборудованных мешалками. В зависимости от растворимости и совместимости компонентов сред могут быть применены отдельные реакторы. Технология приготовления сред значительно усложняется, если в их состав входят нерастворимые компоненты. В различных биотехнологических процессах применяются различные по происхождению и количествам субстраты, поэтому процесс их приготовления варьирует. Дозирование питательных компонентов подбирается и осуществляется индивидуально на каждом производстве в соответствии с технологическим регламентом конкретного процесса.

Стадия ферментации является основной стадией в биотехнологическом процессе, так как в ее ходе происходит взаимодействие продуцента с субстратом и образование целевых продуктов (биомасс, эндо- и экзопродуктов). Эта стадия осуществляется в биохимическом реакторе (ферментере) и может быть организована в зависимости от особенностей используемого продуцента и требований к типу и качеству конечного продукта различными способами. Ферментация может проходить в строго асептических условиях и без соблюдения правил стерильности (так называемая незащищенная ферментация); на жидких и на твердых средах; анаэробно и аэробно. Аэробная ферментация, в свою очередь, может протекать поверхностно или глубинно (во всей толще питательной среды).

Культивирование биологических объектов может осуществляться в периодическом и проточном режимах, полунепрерывно с подпиткой субстратом. При периодическом способе культивирования ферментер заполняется исходной питательной средой и инокулятом микроорганизмов .

Биохимические превращения в этом аппарате продолжаются от десятков часов до нескольких суток. Регуляция условий внутри ферментера – важнейшая задача периодического культивирования микроорганизмов. В ходе периодической ферментации выращиваемая культура проходит ряд последовательных стадий: лаг-фазу, экспоненциальную, замедления роста, стационарную и отмирания. При этом происходят существенные изменения физиологического состояния биообъекта, а также ряда параметров среды. Целевые продукты образуются в экспоненциальной (первичные метаболиты – ферменты, аминокислоты, витамины) и стационарной (вторичные метаболиты – антибиотики) фазах, поэтому в зависимости от целей биотехнологического процесса в современных промышленных процессах применяют принцип дифференцированных режимов культивирования. В результате этого создаются условия для максимальной продукции того или иного целевого продукта. Периодически ферментер опорожняют, производят выделение и очистку продукта, и начинается новый цикл.

Непрерывный процесс культивирования микроорганизмов обладает существенными преимуществами перед периодическим. Непрерывная ферментация осуществляется в условиях установившегося режима, когда микробная популяция и ее продукты наиболее однородны. Применение непрерывных процессов ферментации создает условия для эффективного регулирования и управления процессами биосинтеза.

Постферментационная стадия обеспечивает получение готовой товарной продукции и также, что не менее важно, обезвреживание отходов и побочных продуктов. В зависимости от локализации конечного продукта (клетка или культуральная жидкость) и его природы на постферментационной стадии применяют различную аппаратуру и методы выделения и очистки. Наиболее трудоемко выделение продукта, накапливающегося в клетках.

Первым этапом постферментационной стадии является фракционирование культуральной жидкости и отделение взвешенной фазы – биомассы. Наиболее распространенный для этих целей метод – сепарация, осуществляемая в специальных аппаратах – сепараторах, которые работают по различным схемам в зависимости от свойств обрабатываемой культуральной жидкости. Основные проблемы возникают при необходимости выделения мелковзвешенных частиц с размером 0,5–1,0 мкм и менее (бактериальные клетки) и необходимостью переработки больших объемов жидкости (производство кормового белка, ряда аминокислот). Для повышения эффективности процесса сепарации применяют предварительную специальную обработку культуры – изменение рН, нагревание, добавление химических агентов. Для увеличения сроков годности биотехнологических продуктов производят их обезвоживание и стабилизацию. В зависимости от свойств продукта применяют различные методы высушивания. Сушка термостабильных препаратов осуществляется на подносах, ленточном конвейере, а также в кипящем слое. Особо чувствительные к нагреванию препараты высушивают в вакуум-сушильных шкафах при пониженном давлении и температуре и в распылительных сушилках. К стабилизации свойств биотехнологических продуктов ведет добавление в качестве наполнителей различных веществ. Для стабилизации кормового белка применяют пшеничные отруби, кукурузную муку, обладающие дополнительной питательной ценностью. Для стабилизации ферментных препаратов используют глицерин и углеводы, которые препятствуют денатурации ферментов, а также неорганические ионы кобальта, магния, натрия, антибиотики и т. д.

Раздел «Промышленная биотехнология»

Основные принципы промышленной организации биотехнологических процессов

Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса. В общем виде система биотехнологического производства продуктов микробного синтеза представлена на рис. 1.

Рис. 1. Система биотехнологического производства

Существует 5 стадий биотехнологического производства.

Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента — главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.

Третья стадия — стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

Заключительная стадия биотехнологического производства — приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными. Далее приводится характеристики каждой из стадий промышленного микробиологического синтеза.

Читать дальше ► технология приготовления питательных сред

Стадии биотехнологических производств

1. Подготовительные стадии:

Подготовительные стадии — служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии. На стадии подготовки могут быть использованы следующие процессы: Приготовление среды, обычно жидкой, включающей необходимые компоненты питания для биотехнологической стадии.

1. Приготовление среды 2. Стерилизация среды 3. Подготовка и стерилизация газов (воздуха) 4. Подготовка посевного материала 5. Приготовление биокатализатора 6. Предварительная обработка сырья.

2. Биотехнологические стадии:

Основной стадией является собственно биотехнологическая стадия, на которой с использованием того или иного биологического агента (микроорганизмов, изолированных клеток, ферментов или клеточных органелл) происходит преобразование сырья в тот или иной целевой продукт. Обычно главной задачей биотехнологической стадии является получение определенного органического вещества. Однако биотехнологическая стадия, как правило, включает в себя не только синтез новых органических соединений, но и ряд других биотехнологических процессов, перечисленных ранее.

1. Ферментация 2. Биотрансформацвия 3. Биокатализ (реакции с ферментами) 4. Биоокисление 5. Метавовое брожение 6. Биокомпостирование 7. Биосорбция 8. Бактериальное выщелачивание 9. Биодеградация

3. Разделение жидкости и биомассы:

Чаще всего целевой продукт находится либо в самой биомассе, либо в жидкости. В обоих случаях необходимо сначала разделить эти две фазы, В зависимости от свойств биомассы и жидкости для этих целей могут быть использованы различные процессы.
1. Отстаивание 2. Фильтрация 3. Сецарация 4. Центрифугирование 5. Микрофильтрация 6. Ультрафильтрапия 7. Коатуляция 8. Флотания

4. Выделение вне-внутриклеточных продуктов:

Эта стадия имеет определенные отличия, связанные с тем, являются продукты внеклеточными или внутриклеточными.

1. Экстракция и экстрагирование 2. Осаждевие Цевтрифугировавие 3. Адсорбция 4. Ионцый обмен 5. Оттонка, ректификацця 6. Деэиятеграшiя 7. Гидролиз 8. Ферментолиз 9. Ультрафильтрация

5. Очистка продукта

На стадии выделения продукта главная задача – отделить основную часть продукта. Поэтому необходимо получать биопродукты высокой кондиции, добавляют еще стадию очистки продукта. Задача этой стадии убрать примеси, сделать продукт максимально чистым.

1. Экстракция 2. Осождение 3. Адсорбция 4. Ионный обмен 5. Храмотография 6. Диализ 7. Ультрофильтрация 8. Обратный осмос 9. Ферментолиз 10. Кристаллизация 11. ректификация

6. Концентрирование продукта

После очистки продукта он часто находится все-таки в растворе с небольшими концентрациями примесей. Дальнейшая задача — обеспечить его концентрирование.
Необходимо рассмотреть, как обычно меняется концентрация целевого продукта от биотехнологической стадии до готовой формы продукта.

1. Выпаривание 2. Сушка 3. Осаждение 4. Кристаллизация 5. Фильтрация 6. Ультрафильтрация 7. Нанофильтрация

7. Изготовление готовой формы продукта

На завершающей стадии производства продукт приобретает товарную форму за счет проведения процессов гранулирования (формирование гранул из порошка или прямо из раствора), дражирования, таблетирования (формирование драже, таблеток), розлива или фасовки, амвулирования (затаривания в ампулы).

1. Гранулирование 2. Дражирование 3. Таблетирование 4. Розлив 5. Фасовка 6. Ампулирование

Сырье для процессов ферментации. Основные понятия

Сырье для процессов ферментации прежде всего решает проблему формирования питательных сред, в которых должны содержаться необходимые элементы для построения биомассы микро- организмов; среда является также средой обитания микроорганизмов.

Микроэлементы входят в биомассу в следовых количествах (в целом до 0,3%), в том числе марганец, кобальт, медь, молибден, цинк, бор и др. Повышенные концентрации этих элементов оказывают ингибирующее действие на развитие микроорганизмов, но без их микродоз обойтись нельзя.

Витамины требуются для развития многих микроорганизмов ауксогетеротрофоов — неспособных синтезировать их самостоятельно. Чаще всего необходим комплекс витаминов группы В — тиамин, никотиновая кислота, пантотеновая кислота, пиридоксин, инозит и биотин (последнего недостает чаще всего). Но количество витаминов требуется довольно малое (тысячные доли миллиграмма в литре среды), они могут находиться в натуральном сырье.

Потребности микроорганизмов в питании разнообразны, они идут от физиологии и являются основой рецептуры сред. Универсальных сред нет.

П о с о с т а в у среды могут быть натуральными или синтетическими. Натуральные среды включают в себя продукты животного или растительного происхождения, сложные и непостоянные по составу. Синтетические среды составляются из определенных

химических соединений, обычно из небольшого числа веществ. Они более дороги и менее продуктивны. В них-то и необходимо вносить макро- и микроэлементы, а также витамины.

Сырье представляет собой имеющиеся в распоряжении конкретные вещества, чистые или комплексные, которые содержат необходимые питательные компоненты. Они должны быть доступными и не очень дорогими и не содержать вредных примесей. Поэтому на каждый вид используемого сырья (в том числе и натурального) должны быть стандарты, определяющие его качество.

Вода — по массе самый значительный вид сырья, хотя и самый дешевый. Например, на 1 т пекарских дрожжей при производстве расходуется 150—180 м3 воды. Многие виды продуктов биотехнологии определяются качеством воды (взять хотя бы пиво, вино). Рассмотрим основные требования к этому виду сырья.

Вода должна быть биологически чистой (не более 100 микроорганизмов в 1 мл воды), бесцветной, без привкуса и запаха, не должна давать осадка. Сухой остаток воды после выпаривания — не более 1 г/л, общая жесткость — не более 7 мг-экв/л. Слишком жесткая вода неблагоприятно влияет на процессы ферментации. По содержанию вредных примесей введены следующие ограничения:

свинец —до 0,1 мг/л;

мышьяк — до 0,05 мг/л;

фтор—до 1,5мг/л;

цинк — до 5,0 мг/л;

медь — до 3,0 мг/л.

З. ТИПОВАЯ СХЕМА И ОСНОВНЫЕ СТАДИИ БИОТЕХНОЛОГИЧЕСКИХ ПРОИЗВОДСТВ

Рассмотренные продукты биотехнологии получают по индивидуальным технологиям со своими биологическими агентами, сырьем, числом стадий производства и их технологическими режимами. Тем не менее можно представить себе обобщенную типовую схему биотехнологических производств.

Схема состоит из стадий, в каждой из которых сырье претерпевает определенные технологические воздействия и последовательно превращается во все более сложные полупродукты и, наконец, в конечный продукт. Общий вид такой типовой схемы представлен на рис. 3.1.

Биотехнологическая стадия — это основная стадия, на которой с использованием того или иного биологического агента (микроорганизмов, изолированных клеток, ферментов или клеточных органелл) происходит преобразование сырья в тот или иной целевой продукт.

Обычно главной задачей биотехнологической стадии является получение определенного органического вещества.

Ферментация — процесс, осуществляемый с помощью культивирования микроорганизмов.

Биотрансформация — процесс изменения химической структуры вещества под действием ферментативной активности клеток микроорганизмов или готовых ферментов. В этом процессе обычно не происходит накопления клеток микроорганизмов, а химическая структура вещества меняется незначительно. Вещество как бы уже в основном готово, биотрансформация осуществляет его химическую модификацию: добавляет или отнимает радикалы, гидроксильные ионы, дегидрирует и т.п.

Биокатализ — химические превращения вещества, протекающие с использованием биокатализаторов — ферментов.

Биоокисление — потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.

Метановое брожение — переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.

Биокомпостирование — снижение содержания вредных органических веществ ассоциацией микроорганизмов в твердых отходах, которым придана специальная взрыхленная структура для обеспечения доступа воздуха и равномерного увлажнения.

юз

Выпаривание

Сушка

Осаждение

Кристаллизация

Фильтрация

Ультрафильтрация

Нанофильтрация

Гранулирование

Дражированис

Таблетированис

Розлив

Фасовка

Ампулирование

Газ

рование

Микрофильтра

ция

Ультрафильтра

ция

Коагуляция

Флотация

Подготовка и стерилизация газов (воздуха) Подготовка посевного материала Приготовление биокатал изатора Предварительная обработка сырья

Биоокисление Метановое брожение Биокомпостирование Биосорбция Бактериальное выщелачивание Биодеградация

Экстракция и экстрагирование Осаждение Центрифугирование Адсорбция Ионный обмен Отгонка, ректификация

Дезинтеграция Гидролиз Ферментолиз Ультрафил ьтрация

Экстракция Осаждение Адсорбция Ионный обмен Хроматография Диализ

Ультрафильтрация Обратный осмос Ферментолиз Кристаллизация Ректификация

Рис. 3.1. Типовая схема, основные стадии и реализующие их технологические процессы в биотехнологических производствах

Биосорбция — сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закрепленными на специальных твердых носителях.

Бактериальное выщелачивание — процесс перевода нерастворимых в воде соединений металлов в растворенное состояние под действием специальных микроорганизмов.

Биодеградация — деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.

1. Подготовительные стадии служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии.

На стадии подготовки могут быть использованы следующие процессы.

Приготовление среды, обычно жидкой, включающей необходимые компоненты питания для биотехнологической стадии.

Стерилизация среды — для асептических биотехнологических процессов, где нежелательно попадание посторонней микрофлоры.

Подготовка и стерилизация газов (обычно воздуха), необходимых для протекания биотехнологического процесса. Чаще всего подготовка воздуха заключается в очистке его от пыли и влаги, обеспечении требуемой температуры и очистке от присутствующих в воздухе микроорганизмов, включая споры.

Подготовка посевного материала. Очевидно, что для проведения микробиологического процесса или процесса культивирования изолированных клеток растений или животных необходимо подготовить и посевной материал — предварительно выращенное малое по сравнению с основной стадией количество биологического агента.

Подготовка биокатализатора. Для процессов биотрансформации или биокатализа необходимо предварительно подготовить биокатализатор — либо фермент в свободном или закрепленном на носителе виде, либо биомассу микроорганизмов, выращенную предварительно до состояния, в котором проявляется ее ферментативная активность.

Предварительная обработка сырья. Если сырье поступает в производство в виде, непригодном для непосредственного использования в биотехнологическом процессе, то проводят операцию по предварительной подготовке сырья. Например, при получении спирта пшеницу сначала дробят, а затем подвергают ферментативному процессу «осахаривания», после чего осахаренное сусло на биотехнологической стадии путем ферментации превращается в спирт.

Другой пример — использование древесины для получения дрожжей. Древесину сначала измельчают, а затем подвергают нагреву до 200 °С в кислой среде. В результате такого процесса кислотного гидролиза происходит превращение древесины в раствор глюкозы и лигнин. Раствор глюкозы (гидролизат) как раз и используется в биотехнологическом процессе для получения кормовых дрожжей.

Переходим теперь к стадии, следующей за биотехнологической.

2. Разделение жидкости и биомассы. Чаще всего целевой продукт находится либо в самой биомассе, либо в жидкости. В обоих случаях необходимо сначала разделить две фазы. В зависимости от свойств биомассы и жидкости для этих целей могут быть использованы различные процессы.

Отстаивание — разделение под действием гравитационных сил (обычно при очистке сточных вод).

Фильтрация — пропускание суспензии через фильтрующий материал, на котором задерживаются частицы твердой фазы — биомасса. Такой способ применяют в производстве антибиотиков, особенно в тех случаях, когда микроорганизм-продуцент имеет мицелиальный характер.

Сепарация, центрифугирование — разделение под действием центробежных сил. Наиболее часто используется для отделения дрожжей или бактерий в производстве кормовой биомассы.

Микрофильтрация, ультрафильтрация — пропускание суспензии через мембраны с весьма малым размером пор, обеспечивающее удержание клеток микроорганизмов на мембране и получение раствора, свободного от взвешенных клеток. Ультрафильтрация задерживает уже не только клетки, но и крупные молекулы растворенных веществ.

Коагуляция — добавление в суспензию реагентов, способствующих образованию и осаждению более крупных клеточных агломератов и отделению их от жидкости путем отстаивания.

Флотация — захват биомассы микроорганизмов пузырьками пены и выделение ее из пенной фракции.

3. Выделение продуктов биосинтеза. Эта стадия имеет определенные отличия, связанные с тем, являются ли продукты внеклеточными или внутриклеточными.

Так, для внутриклеточных продуктов сначала необходимо разрушить клеточную оболочку одним из методов, среди которых можно назвать следующие.

Дезинтеграция клеток. Этот процесс разрушения клеточной оболочки может осуществляться физическими методами (с помощью мелющих тел, путем замораживания и продавливания, воздействием ультразвуком, методом декомпрессии — резкого сброса давления) или химическими и биотехнологическими методами.

Гидролиз — разрушение клеточных оболочек под действием химических реагентов и температуры.

Ферментолиз — разрушение клеточных оболочек под действием ферментов при повышенной температуре.

Автолиз — разновидность ферментолиза, когда используют собственные ферменты клетки.

После проведения предварительной операции разрушения клеток выделение целевого продукта осуществляется из раствора методами, которые являются общими для внеклеточных и внутриклеточных продуктов.

Экстракция — переход целевого продукта из водной фазы в не-смешивающуюся с водой органическую жидкость (экстрагент). Наиболее известно выделение жироподобных веществ жидкими углеводородами (типа бензина), но применяются и многие другие виды экстрагентов (хлороформ, эфир, бутилацетат). Экстракция прямо из твердой фазы (в том числе и биомассы микроорганизмов) называется экстрагированием.

Осаждение — выделение целевого продукта путем добавления к жидкости реагента, взаимодействующего с растворенным продуктом и переводящего его в твердую фазу.

Адсорбция — перевод растворенного в жидкости продукта в твердую фазу путем его сорбции на специальных твердых носителях (сорбентах).

Ионный обмен — то же, что адсорбция, но в этом случае в твердую фазу переходят ионы (катионы или анионы), а не целиком молекула целевого продукта или примеси.

Отгонка, ректификация — эти методы используют для выделения растворенных в культуральной жидкости легкокипящих продуктов. Пример — этиловый спирт.

Ультрафильтрация, нанофильтрация и обратный осмос применяются для выделения высокомолекулярных соединений (белков, полипептидов, полинуклеотидов). Обратный осмос и нанофильтрация позволяют отделять даже небольшие по размеру молекулы.

Центрифугирование, ультрацентрифугирование используют для выделения вирусов, клеточных органелл, высокомолекулярных соединений.

4. Очистка продукта. На стадии выделения продукта главная задача — отделить основную часть продукта, пусть даже и с некоторыми примесями. Получается как бы неочищенный продукт. Поэтому, когда необходимо получать биопродукты высокой кондиции, добавляют еще стадию очистки продукта. Задача этой стадии — убрать примеси, сделать продукт максимально чистым.

Эта задача решается с помощью разнообразных процессов, в числе которых многие из тех, что уже были рассмотрены ранее. Это экстракция и экстрагирование, адсорбция, ионный обмен, ультрафильтрация и обратный осмос, ректификация и ферментолиз. Кроме этих процессов используют и следующие.

Хроматография — процесс, напоминающий адсорбцию. На твердом сорбенте собираются растворенные вещества, но не одно, а несколько, часто близких по структуре. Например, смеси белков, нуклеотидов, сахаров, антибиотиков. При адсорбции они и десорбируются вместе. А вот при хроматографии они выходят из сорбента как бы по очереди, что и позволяет их разделять и, значит, очищать друг от друга.

Диализ — процесс, в котором через полупроницаемую перегородку могут проходить низкомолекулярные вещества, а высокомолекулярные остаются. Путем диализа осуществляют очистку вакцин и ферментов от солей и низкомолекулярных растворимых примесей.

Кристаллизация. Этот процесс базируется на различной растворимости веществ при разных температурах. Медленное охлаждение позволяет формировать кристаллы из растворов целевых продуктов, причем чистота их обычно очень высока. Вся «грязь» остается в маточном растворе. Таким образом, например, получают кристаллы пенициллина.

Можно даже получить еще более чистый продукт, если кристаллы растворить в воде или растворителе, а потом снова кристаллизовать (т.е. провести процесс перекристаллизации).

5. Концентрирование продукта. После очистки продукт часто находится все-таки в растворе с небольшими концентрациями примесей. Дальнейшая задача — обеспечить его концентрирование.

Кстати, необходимо рассмотреть, как обычно меняется концентрация целевого продукта от биотехнологической стадии до готовой формы продукта. На выходе из биотехнологической стадии суспензия обычно содержит целевого продукта примерно 0,1—1%, после стадии отделения биомассы — 0,1—2%, после стадии выделения — 1 — 10%, после очистки — 50—80% и, наконец, после концентрирования — 90—100%.

На стадии концентрирования применяют такие процессы, как выпаривание, сушка, осаждение, кристаллизация с фильтрацией получившихся кристаллов, ультрафильтрация и гиперфильтрация или нанофильтрация, обеспечивающие как бы «отжим» растворителя из раствора.

  • 6. Получение готовой формы продукта. На завершающей стадии производства продукт приобретает товарную форму за счет проведения процессов гранулирования (формирование гранул из порошка или прямо из раствора), дражирования, таблетирования (формирование драже, таблеток), розлива или фасовки, ампулирования (затаривания в ампулы).
  • 7. Очистка стоков и выбросов. Таким образом, мы рассмотрели схему основного биотехнологического производства, которое на некоторых стадиях, если не на всех, имеет определенные стоки и выбросы в атмосферу. Очистка этих стоков и выбросов — специальная задача, которая обязательно должна решаться в наше экологически неблагополучное время. По существу очистка стоков — это отдельное биотехнологическое производство, имеющее свои подготовительные стадии, биотехнологическую стадию, стадию отстаивания биомассы активного ила и стадию дополнительной очистки стоков и переработки осадка. Очищенная вода иногда может быть возвращена в основное производство.

Примеры блок-схем биотехнологических производств

На рис. 3.2 дан пример длинной технологической схемы производства пенициллина. Здесь много подготовительных стадий, поскольку наряду с основной средой в процессе ферментации в ферментёр подаются растворы глюкозы, аммиачной воды и фенилук-сусной кислоты (ФУК). Получаемая после ферментации биомасса отделяется фильтрацией, сушится и используется как кормовой продукт. В фильтрате с помощью коагуляции отделяются белки, получаемый осадок отфильтровывается.

Для обеспечения чистоты продукта предусмотрены последовательные четыре стадии экстракции с переводом пенициллина из водного раствора в органический растворитель бутилацетат, затем обратно в водную фазу — раствор соды, снова в бутилацетат и затем раствором едкого кали в водный раствор.

Интересно выполнена стадия освобождения бутилацетатного раствора от воды — его охлаждают до — 16…— 18 °С, а затем отфильтровывают от образовавшихся кристалликов льда.

В составе среды есть темно-коричневый компонент — кукурузный экстракт. Этот коричневый пигмент убирают из раствора путем сорбции на угле.

Полученный водный раствор подвергнут стерилизующей фильтрации, вакуум-выпариванию с бутиловым спиртом при низкой температуре (16—26 °С). Сконцентрированный раствор кристаллизуют охлаждением, а образовавшиеся кристаллы отфильтровывают, гранулируют и сушат под вакуумом, после чего стерильно фасуют в пенициллиновые флаконы.

На рис. 3.3 представлено производство внутриклеточных ферментов. Здесь после двух стадий отделения биомассы (сепарации и центрифугирования) появляется стадия дезинтеграции клеток, так как для выделения ферментов необходимо нарушить оболочки клеток. Далее происходит отделение оболочек клеток последовательно сначала на центрифуге, а затем с помощью микрофильтрации, и концентрат оболочек клеток поступает на сушку. Из жидкой фазы путем ультрафильтрации выделяется и концентрируется фермент, который затем высушивается в мягких условиях (сублимационная сушка).

Практически полным биотехнологическим производством является биологическая очистка сточных вод (рис. 3.4). Здесь представлено большое число подготовительных стадий (усреднение стоков, их нейтрализация до необходимой величины pH, очистка от механических примесей фильтрованием или отстаиванием, очистка от нефтепродуктов в нефтеловушке, коагуляция реагентами растворенных примесей, отделение образовавшегося осадка отстаиванием). Подготовленный сток поступает на стадию биоокисления, на которой происходит изъятие растворенных органических веществ активным илом. Это и есть собственно биотехнологическая стадия, протекающая в аэротенках с подачей воздуха. Далее активный ил отделяется от жидкости отстаиванием, и очищенный сток поступает в водоем. Сгущенный активный ил частично возвращается на стадию биоокисления. Избыточное количество активного ила утилизируют одним из трех способов.

Приготов

ление

среды

Стерилизация среды

Подготов-

Стерилиза-

ка воздуха

ция воздуха

Сток Сток

Приготовление посевного материала

Рис. 3.3. Производство внутриклеточных ферментов

Удобрение

’ —

^ Фермент

?

Сушка

Фасовка

-^_

Клеточные

Расфасовка

оболочки

Первый и самый неэкологичный — распределение на так называемых «иловых площадках», где он долго сушится на открытом воздухе, занимая большие площади и распространяя вокруг запахи.

Второй способ предполагает концентрирование ила с помощью флотации. Концентрат активного ила поступает на сушку. Высушенный ил используют в качестве удобрения или кормового продукта — в зависимости от его загрязненности. И наконец, третий способ: концентрат активного ила перерабатывается метановым брожением в биогаз, а образовавшийся осадок высушивается и также применяется как удобрение .

Контрольные вопросы

  • 1. Опишите типовую схему биотехнологического производства.
  • 2. Каковы главные задачи биотехнологической стадии производства?
  • 3. Перечислите подготовительные стадии биотехнологического производства.
  • 4. Назовите основные способы разделения жидкости и биомассы.
  • 5. Какие существуют способы выделения продуктов биосинтеза?
  • 6. Какими способами производят очистку продукта?
  • 7. Что такое концентрирование продукта? Для чего оно проводится?
  • 8. Опишите блок-схему производства пенициллина.
  • 9. Опишите блок-схему производства внутриклеточных ферментов.
  • 10. Опишите блок-схему биологической очистки сточных вод.

Кривая роста микроорганизмов в простых периодических условиях.

При внесении бактерий в питательную среду они обычно растут до тех пор, пока содержание какого-нибудь из необходимых им компонентов среды не достигнет минимума, после чего рост прекращается. Если на протяжении этого времени не добавлять питательных веществ и не уда­лять конечных продуктов обмена, то получим так называемую периоди­ческую культуру (популяцию клеток в ограниченном жизненном про­странстве).

Кривая, описывающая зависимость логарифма числа живых клеток от времени, называется кривой роста. Типичная кривая роста (рис. 6.6) имеет S-образную форму и позволяет различить несколько фаз роста, сменяющих друг друга в определенной последовательности и в боль­шей или меньшей степени выраженных: начальную (или лаг-) фазу, экс­поненциальную (или логарифмическую) фазу, стационарную фазу и фа­зу отмирания.

Начальная фаза. Эта фаза охватывает промежуток времени между инокуляцией и достижением максимальной скорости деления. Продол­жительность этой фазы зависит главным образом от предшествовавших условий культивирования и возраста инокулята, а также от того, на­сколько пригодна для роста данная среда. Если инокулят взят из старой культуры (в стационарной фазе роста), то клеткам приходится сначала адаптироваться к новым условиям. Если источники энергии и углерода в новой среде отличаются от тех, какие были в предшествующей культуре, то приспособление (адаптация) к новым условиям может быть связано с синтезом новых ферментов, которые ранее не были нужны и поэтому не синтезировались. Образование новых ферментов индуцируется новым субстратом.

Экспоненциальная фаза. Экспоненциальная (логарифмическая) фаза роста характеризуется постоянной максимальной скоростью деления клеток. Эта скорость во время экспоненциальной фазы зависит от вида бактерий, а также от среды. Величина клеток и содержание в них белка у многих бактерий тоже остаются в экспоненциальной фазе постоянными. В известном смысле можно сказать, что бактериальная культура в этом случае состоит из «стандартных клеток». Если точно установлено, что число клеток, со­держание в них белка и их сухая биомасса увеличиваются с одинаковой скоростью, то за ростом культуры можно следить, пользуясь каким-ни­будь одним из этих показателей.

Нередко, однако, и в экспоненциальной фазе роста клетки периоди­ческой культуры претерпевают изменения, так как постепенно изменяет­ся среда: уменьшается концентрация субстрата, увеличивается плот­ность клеточной суспензии и накапливаются продукты обмена. В связи с тем что в экспоненциальной фазе скорость деления клеток относи­тельно постоянна, эта фаза наиболее удобна для определения скорости деления (и скорости роста).

Стационарная фаза. Стационарная фаза наступает тогда, когда число клеток перестает увеличиваться. Скорость роста зависит от концентра­ции субстрата-при уменьшении этой концентрации, еще до полного ис­пользования субстрата, она начинает снижаться. Поэтому переход от экспоненциальной фазы к стационарной происходит постепенно. Ско­рость роста может снижаться не только из-за нехватки субстрата, но также из-за большой плотности бактериальной популяции, из-за низко­го парциального давления 02 или накопления токсичных продуктов об­мена; все эти факторы вызывают переход к стационарной фазе. И в ста­ционарной фазе могут еще происходить такие процессы, как использо­вание запасных веществ, распад части рибосом и синтез ферментов. Наблюдаемая картина зависит от того, какой именно фактор лимити­рует рост. Быстро гибнут лишь очень чувствительные клетки; другие еще долго сохраняют жизнеспособность-до тех пор, пока есть возмож­ность получать необходимую для этого энергию в процессе окисления каких-либо запасных веществ или клеточных белков. Количество биомассы, достигнутое в стационарной фазе, называют выходом или урожаем. Урожай зависит от природы и количества ис­пользуемых питательных веществ, а также от условий культивирования.

Фаза отмирания. Число живых клеток может сни­жаться экспоненциально. Иногда клетки лизируются под действием соб­ственных ферментов (автолиз).

Стадии биотехнологического производства

Стадии биотехнологического производства

Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса.

Существует 5 стадий биотехнологического производства.

Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента — главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.

Третья стадия — стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

Заключительная стадия биотехнологического производства — приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными. Далее приводится характеристики каждой из стадий промышленного микробиологического синтеза.

Технология приготовления питательных сред для биосинтеза

Основу питательных сред для культивирования микроорганизмов составляют источники углерода. Кроме углерода клетки микроорганизмов в процессе роста испытывают потребность в азоте, фосфоре, макро- и микроэлементах. Все вещества этого рода находятся в питательных средах в виде солей, исключение составляют среды, где азот и фосфор могут усваиваться растущими культурами из органических источников, например автолизатов или гидролизатов микробного или животного происхождения.

Отделения приготовления питательной среды представляет собой цех, оборудованный емкостями для хранения жидких и твердых веществ, средствами их транспортировки и аппаратами с перемешивающими устройствами для приготовления растворов, суспензий или эмульсий. При этом питательные соли хранятся обычно в твердом виде, а приготовление их смеси с заданным соотношением компонентов производится в аппарате с мешалкой, куда подаются твердые компоненты в необходимом количестве и далее происходит их растворение. Иногда соединяются и перемешиваются заранее приготовленные растворы. Жидкие и твердые источники углерода обычно вводят в уже готовую питательную среду непосредственно перед ферментацией, так как это устраняет опасность заражения посторонней микрофлорой, вероятность которого возрастает при хранении готовой питательной смеси.

При непрерывном культивировании в производстве микробного белка углеводороды и растворы солей вводят в ферментер раздельно по индивидуальным линиям, а смешение и эмульгирование нерастворимых в воде n-алканов происходит уже в самом биореакторе. При культивировании бактерий на метане последний постоянно барботируют в аппарат через специальные устройства.

При периодической ферментации в начале процесса инокулят (засевная доза микроорганизмов) вносится в уже готовую питательную среду, содержащую все компоненты. Поэтому источники углерода вводят непосредственно перед засевом или отдельные компоненты среды вводят по мере потребления их культурой, поддерживая в ферментере некоторую оптимальную их концентрацию, которая на разных этапах ферментации может меняться по определенному закону.

Важнейшим элементом приготовления питательных сред является соблюдение требований асептики. Это либо создание заданного значения рН, обеспечивающего подавление посторонних микроорганизмов, либо полная стерилизация всех подаваемых потоков и самого биореактора.

Для стерилизации газовых потоков (в первую очередь воздуха) используют процесс фильтрации через специальные волокнистые фильтры с последовательно расположенными фильтрующими элементами. Фильтрующий материал периодически стерилизуется подачей острого пара в отключенный фильтр через заданные промежутки времени. Жидкостные потоки стерилизуют различными методами, из которых практический интерес представляют термический, радиационный, фильтрационный и отчасти химический.

Термический — самый распространенный, при температурах порядка 120-150оС.

Радиационный — g-излучение, применяется редко из-за трудностей создания и эксплуатации мощных источников этого излучения.

В отдельных случаях применяют химические стерилизующие агенты (вещества с ярко выраженным асептическим действием). Основная проблема в этом случае — необходимость устранения стерилизующего агента из питательной среды после гибели микрофлоры до внесения инокулята. Химические антисептики должны быть не только высокоэффективны, но и легко разлагаемы при изменении условий после завершения стерилизации. К числу лучших относится пропиолактон, обладающий сильным бактерицидным действием и легко гидролизуемый в молочную кислоту.

Мало распространен и метод фильтрации, что объясняется аппаратными трудностями. Метод основан на способности полупроницаемых мембран с крупными порами пропускать жидкую фазу и концентрировать клетки микроорганизмов. В принципе этот метод является идеальным для стерилизации термически неустойчивых жидких и газовых средств, поскольку может осуществляться при низкой температуре и требует лишь градиента давления по разные стороны мембраны. Основная трудность — наличие термостойких мембран, способных выдерживать многократную стерилизацию их самих. В настоящее время эта проблема решается путем применения термостойких полимеров в производстве мембран.

В заключение заметим, что ряд субстратов не требует стерилизации, так как они сами обладают асептическим действием; сюда относят метанол, этанол, концентрированная уксусная кислота и др. В этом случае ограничиваются стерилизацией прочих элементов питательной среды.

Получение засевной дозы

В технологическом процессе используются полезные свойства штамма, следовательно, необходимо сохранять и, если возможно, улучшать его производственные качества. Поэтому в биотехнологическом производстве имеется отделение чистой культуры, в задачей которого является постоянное и надежное воспроизведение полезных свойств продуцента, найденных или достигнутых в свое время в ходе лабораторных исследований. Такое отделение проводит лабораторные операции по контролю и сохранению чистой культуры, а также маломасштабное культивирование для постоянной передачи штамма на стадию ферментации.

Фактически это микробиологическая лаборатория, с музеем штаммов-продуцентов. В ходе контрольных высевов и маломасштабных ферментаций (в пробирках, колбах и т. д.) контролируется устойчивость всех имевшихся или приобретенных признаков, послуживших основанием для рекомендации к промышленному применению этих культур. По мере необходимости из отделения чистой культуры поступает заданная масса инокулята, идущая в производство.

При периодическом процессе культивирования (при производстве метаболитов) в отделении чистой культуры готовят засевную дозу клеток для каждой из операций основного производства. При непрерывном производстве кормового белка этого не требуется, однако для повышения качества продукта предпочитают время от времени вводить клетки штамма-продуцента из отделения чистой культуры. Для этого в отделении имеется ферментационная часть, где производится выращивание достаточно крупных партий микроорганизма продуцента.

Посевные дозы выращиваются последовательно в колбах и бутылях на 10-20 литров, находящихся на качалках или просто в термостатируемом помещении, и далее в последовательности ферментеров объемом (по необходимости) 10, 100, 500 и 1000 литров, в которых осуществляется перемешивание, аэрация и термостатирование культуральной жидкости с клетками.

Отделение чистой культуры должно иметь достаточно большую коллекцию штаммов продуцентов, так как возможны временные переходы с одного штамма на другой, вызванные различными причинами. Например, сезонные изменения температуры частично компенсируются подбором достаточно продуктивных термотолерантных штаммов. Кроме того, микробиологическая промышленность зачастую вынуждена использовать в качестве компонентов питательных сред отходы сельского хозяйства и пищевой промышленности (меласса, кукурузный экстракт), что ведет к сезонным изменениям сырья и предполагает адаптацию продуцента к особенностям среды. Все это делает роль микробиологической службы производства достаточно высокой.

Ферментация, устройство ферментера

Стадия ферментации — центральная среди этапов промышленного производства. Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и термостатированную среду инокулята до завершения процессов роста, биосинтеза или биотрансформации.

Ферментация проходит в специальных емкостях, называемых ферментерами или биореакторами. Основными элементами ферментера являются двойные стенки, промежуток между которыми заполняется охлаждающей или нагревающей жидкостью, входные отверстия для газовых и жидких потоков, система контроля за составом питательной среды и условиями внутри реактора.

Поскольку в промышленной биотехнологии выделяют 2 типа процессов — накопление биомассы и накопление ценных веществ, возникающих в ходе роста и последующего развития культуры, то меняется и характер построения производства во времени. Биомасса одноклеточных выращивается непрерывным способом в аппаратах хемостатного типа, а все процессы второй группы осуществляются периодически, когда в одном и том же аппарате в производственном цикле протекают все необходимые фазы развития клеток и биосинтеза. Процессы двух рассматриваемых типов отличаются по требованиям к степени асептики, что связано с их объёмами — белок одноклеточных выпускается миллионами тонн сухого вещества, а выпуск продуктов второго типа составляет, как максимум, тысячи или десятки тысяч тонн. Поэтому в производстве белковых веществ ограничиваются достаточно высокой, но не 100% степенью асептики, обеспечивая последнюю подбором режима культивирования, подходящего для продуцента, но неблагоприятного для возможных примесных штаммов.

Технологическое оформление процессов промышленной биотехнологии в значительной мере определяется отношением микроорганизма-продуцента к кислороду. При использовании аэробных культур ферментационное оборудование и нормы технологического режима подбираются таким образом, чтобы масса обмен (перенос кислорода из газовой в жидкую фазу) обеспечивал поступление кислорода к клеткам в количествах, необходимых и оптимальных для данной культуры в данной фазе роста.

Промышленное использование факультативных анаэробов не ставит задачи абсолютного исключения кислорода из среды, поэтому процессы этого типа (брожение) технологически проще аэробных. В начальной фазе этих процессов требуется лишь удалить кислород из газовой фазы над культуральной жидкостью, что может быть достигнуто введением инертного газа или просто вытеснением воздуха углекислотой, выделяемой клетками при метаболизме.

Технологическое оформление строго анаэробных процессов сложнее, чем для процессов брожения, так как в этом случае необходимо полностью исключить возможность попадания кислорода в газовую, а оттуда и в жидкую среду.

Вопросы термостатирования ферментационного процесса (подвода или отвода тепла в ходе ферментации) являются очень острыми в целом ряде производств биотехнологии. В аэробных условиях микробиологический синтез протекает со значительным тепловыделением, что вызывает необходимость отвода тепла из аппаратов большого объема (сотни и тысячи кубометров). Технологические требования к скорости теплоотвода очень жесткие из-за узкого температурного оптимума роста культуры (2-3up>оС). Наиболее приемлимый на практике способ теплоотвода — охлаждение водой через змеевики, рубашки и др. устройства — осложняется небольшой разностью температур между содержимым биореактора (32-34оС для дрожжей Candida) и охлаждающей водой (20оС), температура которой в жаркое время года еще выше. Поэтому в реакторе создается развитая поверхность газообмена, увеличивается скорость движения жидкостей и т.д.

Важно также поддерживать определенный состав питательной среды. В непрерывных процессах биосинтеза задача технолога сводится к поддержанию концентрации всех питательных веществ (и кислорода) и дозированному введению кислоты или щелочи для рН-статирования системы на заданном уровне. Простейшим вариантом управления стадией ферментации в периодическом режиме является изменение концентраций компонентов среды и её рН, а также введение необходимых добавок по заранее разработанной программе, реализуемой технологом в каждом цикле ферментации. Этот способ относительно прост и легко поддается автоматизации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *