Информационные объекты различных видов

Содержание

Информационные объекты различных видов

Информационный объект – обобщающее понятие, описывающее различные виды объектов; это предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств.

Простые информационные объекты: звук, изображение, текст, число. Комплексные (структурированные) информационные объекты: элемент, база данных, таблица, гипертекст, гипермедиа.

Информация содержится везде. Дерево содержит собственную генетическую информацию, и только благодаря этой информации от семечка берёзы вырастает только берёза. Для деревьев источником информации является воздух, именно по уровню состояния воздуха дерево может определить время распускания почек. Перелетные птицы знают свой маршрут перелёта, и каждая стая идёт только своим заданным в генах маршрутом.

Стремление зафиксировать, сохранить надолго свое восприятие информации было всегда свойственно человеку. Мозг человека хранит множество информации, и использует для хранения ее свои способы, основа которых — двоичный код, как и у компьютеров. Человек всегда стремился иметь возможность поделиться своей информацией с другими людьми и найти надежные средства для ее передачи и долговременного хранения. Для этого в настоящее время изобретено множество способов хранения информации на внешних (относительно мозга человека) носителях и ее передачи на огромные расстояния.

Основные виды информации по ее форме представления, способам ее кодирования и хранения:

· графическая или изобразительная — первый вид, для которого был реализован способ хранения информации об окружающем мире в виде наскальных рисунков, а позднее в виде картин, фотографий, схем, чертежей;

· звуковая — мир вокруг нас полон звуков, и задача их хранения и тиражирования была решена с изобретением звукозаписывающих устройств в 1877 г.

Разновидностью звуковой информации является музыкальная информация — для этого вида был изобретен способ кодирования с использованием специальных символов, что делает возможным хранение ее аналогично графической информации;

· текстовая— способ кодирования речи человека специальными символами — буквами, причем разные народы имеют разные языки и используют различные наборы букв (алфавиты) для отображения речи; особенно большое значение этот способ приобрел после изобретения бумаги и книгопечатания;

· числовая— количественная мера объектов и их свойств в окружающем мире; особенно большое значение приобрела с развитием торговли, экономики и денежного обмена; аналогично текстовой информации для ее отображения используется метод кодирования специальными символами — цифрами, причем системы кодирования (счисления) могут быть разными;

· видеоинформация — способ сохранения «живых» картин окружающего мира, появившийся с изобретением кино.

Существуют также виды информации, для которых до сих пор не изобретено способов их кодирования и хранения — это тактильная информация, передаваемая ощущениями, органолептическая, передаваемая запахами и вкусами и др.

Для передачи информации на большие расстояния первоначально использовались кодированные световые сигналы, с изобретением электричества — передача закодированного определенным образом сигнала по проводам, позднее — с использованием радиоволн.

Создатель общей теории информации и основоположник цифровой связи Клод Шеннон впервые обосновал возможность применения двоичного кода для передачи информации.

С появлением компьютеров (или, как их вначале называли в нашей стране, ЭВМ — электронные вычислительные машины) вначале появилось средство для обработки числовой информации. Однако в дальнейшем, особенно после широкого распространения персональных компьютеров (ПК), компьютеры стали использоваться для хранения, обработки, передачи и поиска текстовой, числовой, изобразительной, звуковой и видеоинформации. С момента появления первых персональных компьютеров (80-е годы XX века) — до 80 % их рабочего времени посвящено работе с текстовой информацией.

Хранение информации при использовании компьютеров осуществляется на магнитных дисках или лентах, на лазерных дисках (CD и DVD), специальных устройствах энергонезависимой памяти (флэш-память и пр.). Эти методы постоянно совершенствуются, изобретаются новые устройства и носители информации.

Особым видом информации в настоящее время можно считать информацию, представленную в глобальной сети Интернет. Здесь используются особые приемы хранения, обработки, поиска и передачи распределенной информации больших объемов и особые способы работы с различными видами информации.

С помощью компьютера возможно создание, обработка и хранение информационных объектов любых видов, для чего служат специальные программы.

Информационный объект:

· обладает определенными потребительскими качествами (т.е. он нужен пользователю);

· допускает хранение на цифровых носителях в виде самостоятельной информационной единицы (файла, папки, архива);

· допускает выполнение над ним определенных действий путем использования аппаратных и программных средств компьютера.

В таблице приведены основные виды программ и соответствующие информационные объекты, которые с их помощью создаются и обрабатываются.

Программы Информационные объекты
Текстовые редакторы и процессоры Текстовые документы
Графические редакторы и пакеты компьютерной графики Графические объекты: чертежи, рисунки, фотографии
Табличные процессоры Электронные таблицы
СУБД – системы управления базами данных Базы данных
Пакеты мультимедийных презентаций Компьютерные презентации
Клиент-программа электронной почты Электронные письма, архивы, адресные списки
Программа-обозреватель Интернета (браузер) Web-страницы, файлы из архивов Интернета

Информационные объекты различных видов.

Информация — это ключевое понятие современной науки, которое стоит в одном ряду с такими как «вещество» и «энергия». Существует три основные интерпретации понятия «информация».

Научная интерпретация. Информация — исходная общенаучная категория, отражающая структуру материи и способы ее познания, несводимая к другим, более простым понятиям.

Абстрактная интерпретация. Информация — некоторая последовательность символов, которые несут как вместе, так в отдельности некоторую смысловую нагрузку для исполнителя.

Конкретная интерпретация. В данной плоскости рассматриваются конкретные исполнители с учетом специфики их систем команд и семантики языка. Так, например, для машины информация — нули и единицы; для человека — звуки, образы, и т.п.

Существуют несколько концепций (теорий) информации.

Первая концепция (концепция К. Шеннона), отражая количественно-информационный подход, определяет информацию как меру неопределенности (энтропию) события. Количество информации в том или ином случае зависит от вероятности его получения: чем более вероятным является сообщение, тем меньше информации содержится в нем.

Вторая концепция рассматривает информацию как свойство (атрибут) материи. Ее появление связано с развитием кибернетики и основано на утверждении, что информацию содержат любые сообщения, воспринимаемые человеком или приборами. Наиболее ярко и образно эта концепция информации выражена академиком В.М. Глушковым.

Третья концепция основана на логико-семантическом (семантика — изучение текста с точки зрения смысла) подходе, при котором информация трактуется как знание, причем не любое знание, а та его часть, которая используется для ориентировки, для активного действия, для управления и самоуправления. Иными словами, информация — это действующая, полезная, «работающая» часть знаний. Представитель этой концепции В.Г. Афанасьев.

В настоящее время термин информация имеет глубокий и многогранный смысл. Во многом, оставаясь интуитивным, он получает разные смысловые наполнения в разных отраслях человеческой деятельности:

· в житейском аспекте под информацией понимают сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специальными устройствами;

· в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов;

· в теории информации (по К.Шеннону) важны не любые сведения, а лишь те, которые снимают полностью или уменьшают существующую неопределенность;

· в кибернетике, по определению Н. Винера, информация — эта та часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы;

· в семантической теории (смысл сообщения) — это сведения, обладающие новизной, и так далее…

Такое разнообразие подходов не случайность, а следствие того, что выявилась необходимость осознанной организации процессов движения и обработки того, что имеет общее название — информация.

По способу восприятия информацию разделяют на следующие виды: визуальная, аудиальная, вкусовая, обонятельная и тактильная.

Человек создает приборы, позволяющие получать информацию, которая недоступна ему в непосредственных ощущениях. Микроскопы, телескопы, термометры, спидометры — перечень, который можно продолжать и продолжать. Аналогам органов чувств человека в технических приборах соответствуют различные датчики. Получение информации называется вводом. В персональном компьютере за ввод информации отвечают специальные устройства ввода: клавиатура, сканер, дигитайзер, микрофон, мышь и многое другое.

Человек воспринимает информацию с помощью органов чувств. Воспринимаемая информация поступает в виде энергетических сигналов (свет, звук, тепло) и излучений (вкус и запах), причем процесс поступления этих сигналов происходит непрерывно.

Информация необходима человеку не вообще, а конкретно в нужное время для ориентирования в окружающем мире и принятия решений о дальнейших действиях. При качественной оценке получаемой информации говорят о следующих ее свойствах:

Свойства информации:

Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений. Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестаёт отражать истинное положение дел.

Информация полна, если её достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п.

Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека.

Только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка. Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной.

Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по-разному излагаются в школьных учебниках и научных изданиях.

| следующая лекция ==>
Символьная или знаковая информация — это информация, воспринимаемая человеком в речевой или письменной форме. | Универсальность дискретного (цифрового) представления информации

Дата добавления: 2017-10-09; просмотров: 2313;

Информация. Информационные объекты различных видов.

Раздел программы

Информация и информационные процессы

Тема занятия

Информация. Информационные объекты различных видов.

Цели занятия

  • познакомить с понятиями «информация», «объект»;

  • рассмотреть различные трактовки термина «информация»;

  • обобщить известные свойства информации;

  • расширить представление обучающихся о информационных объектах различных видов;

  • способствовать формированию навыков структурирования и обобщения полученной информации;

  • продолжить формирование навыков работы с информационными ресурсами.

Задачи занятия

Образовательная: знакомство, обобщение и систематизация знаний студентов по основным понятиям: информация, свойства информации, виды информации, информационные объекты.

Развивающая: развивать познавательный интерес и внимание учащихся; развивать умения применять полученные знания при решении задач различной направленности.

Воспитательная: формировать навыки самоорганизации и инициативы; воспитывать информационную культуру.

Тип занятия

Изучение нового материала и решение задач — комбинированный

Основное содержание темы, термины и понятия

Информация, свойства информации: своевременность (актуальность), достоверность, полнота, ценность (полезность), ясность (понятность), защищенность, эргономичность, виды информации: обонятельная, осязательная, вкусовая, зрительная, звуковая, объект, активные и пассивные объекты.

Организация образовательного пространства

Формы работы

Ресурсы

Фронтальная, индивидуальная, практикум по решению задач

Оборудование:

— мультимедийный проектор;

— компьютерный класс.

Программное обеспечение:

— Microsoft Power Point;

— Flash Player (или любой браузер).

Цифровые образовательные ресурсы:

— презентация «Информация. Информационные объекты различных видов».

Интернет-ресурсы:

ХОД ЗАНЯТИЯ

  1. Организационный момент

Приветствие студентов, проверка готовности к занятию.

  1. Актуализация опорных знаний

Вопросы для беседы:

— Что для современного человека является главным в сегодняшней жизни?

— Что является главной составляющей в названии учебного предмета «Информатика»?

— Почему общество, в котором мы с вами живем, называется информационным?

  1. Постановка темы и целей занятия

Из ответов формулируется тема занятия «Информация. Информационные объекты различных видов». Сообщаются цели занятия (слайд 1).

  1. Изучение нового материала

— Что вы понимаете под информацией?

(Студенты дают ответы).

Понятие информация – одно из фундаментальных в современной науке. Наряду с такими понятиями, как вещество, энергия, пространство и время, оно составляет основу современной научной картины мира. Однозначно определить, что же такое информация, так же невозможно, как невозможно это сделать для понятий «время», «энергия» и пр.

«Нет пожалуй, в науке, практике современности понятия более распространённого, нежели понятие » информация «. И нет в тоже время другого понятия, по поводу которого ведется столько споров, дискуссий, имеется столько различных точек зрения…»,- утверждает советский ученый В.Г. Афанасьев (слайд 2).

Термин «информация» происходит от латинского слова «informatio», что означает сведения, разъяснения, изложение. Ожегов в «Словаре русского языка» термин «информация» объяснил, как сообщение, осведомляющее о положении дел, состоянии чего-нибудь.

Существует множество определений информации, это обусловлено сложностью, специфичностью и многообразием подходов к толкованию сущности этого понятия. Выделим три наиболее распространенные концепции информации, каждая из которых по-своему объясняет ее сущность (Слайд 3).

Концепции

I — концепция К. Шеннона

II — информация как свойство материи

III — основана на логико-семантическом подходе

Определяет информацию как меру неопределенности событий, то есть количество информации в том, или ином случае зависит от вероятности его получения. Данный подход не учитывает смысловую сторону информации, но является основой для измерения информации и кодирования сообщений.

Рассматривает информацию как свойство материи. Концепция основана на утверждении, что информацию содержат любые сообщения, воспринимаемые человеком или приборами.

Информация трактуется как знание, которое используется для ориентировки, для активного действия, для управления и для самоуправления. Информация — это действующая, полезная, «работающая» часть знаний.

Все точки зрения имеют право на существование и иссле­дуются в соответствующих областях науки: информация как семантическое свойство материи изучается в философии, физике; информация как функция управления изучается в кибернетике, физиологии, биологии; информация как содержание воспринятого сигнала изучается в лингвистике, социологии, психологии.

Информатике как науке ближе второй и третий подходы.

(Слайд 5). Наиболее общим философским определением является следующее: информация – это отраженное многообразие.

Пример 1: Чтобы лучше понять, о чем идет речь, представьте себе, что вас поместили в темную комнату: стены пол и потолок которой сделаны из одинакового материала, в которой не слышно ни одного звука, температура постоянна. Вокруг вас все неизменно. Человек не может долго выдержать такое состояние однообразия, неизменности. Установлено, что если кого-либо полностью лишить информации об окружающем мире, всякого восприятия, то он очень скоро почувствует себя крайне неуютно. После нескольких дней лишения всех ощущений он не сможет выполнять самые простые движения.

В быту под информацией понимают сведения, которые нас интересуют. Но заинтересовать нас могут только те сведения, которые мы восприняли и осознали. Поэтому восприятие поступающих извне сигналов и их интерпретация — основа превращения этих сигналов в информацию для нас.

Пример 2: Все ли сигналы внешнего мира несут информацию для вас? Конечно, нет. Два человека вместе идут по улице, но видят ее по-разному. Один замечает (воспринимает и осознает) все проезжающие мимо автомобили, а второй обращает внимание на собак и котов. Попросите рассказать их, что они видели, и вы услышите описание совершенно разных улиц.

В журналистике под информацией понимают не любые сообщения, а только те из них, которые обладают новизной.

В технике связи под информацией принято понимать любую последовательность сигналов, которая хранится, передается или обрабатывается с помощью технических средств. Не учитывая смысл этих сигналов.

Под информацией в теории информации понимают не любые сведения, а лишь те, которые снимают полностью или уменьшают существующую до их получения неопределенность. Информация – это снятая неопределенность.

(Слайд 6). Остановимся на следующем определении понятия «информация» (Фридланд А.Я.):

  • Информация – сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые воспринимают информационные системы (живые организмы, управляющие машины) в процессе жизнедеятельности и работы.

Поскольку взглядов на феномен информации – множество, то существуют и другие ее определения.

Пример 3: Текст телеграммы, предаваемой по телеграфу, в которой сообщается об известных вам событиях, с бытовой точки зрения на определение понятия «информация» станет для вас информацией, когда вы ее прочтете и осознаете. С технической точки зрения, текст телеграммы является информацией в процессе его ввода, передачи, вывода и хранения на бумажной ленте. С точки зрения новизны, никакой информации для вас в такой телеграмме нет, так же как и сточки зрения информации как снятой неопределенности.

Пример 4: Идея, пришедшая в голову вашему другу и которой он с вами поделился, с бытовой точки зрения является для вас информацией, если вы ее поняли. С точки зрения технического подхода – это не информация. С точки зрения новизны – информация. Согласно подходу к информации как снятой неопределенности, рассказ друга будет для вас информацией, только если он содержит неизвестные до сих пор вам ответы на некоторые вопросы.

Основные свойства информации (Слайд 7).

(необходимо повторить с обучающимися сведения, известные из базового курса и затем расширить знания обучающихся).

Свойства

Пояснения

Объективность

Информация – это отражение внешнего мира, а он существует независимо от нашего сознания и желания. Информация объективна, если она не зависит от чьего-либо мнения, суждения.

Объективную информацию можно получить с помощью исправных датчиков, измерительных приборов. Но, отражаясь в сознании конкретного человека, информация перестает быть объективной, становится субъективной, так как преобразовывается в зависимости от мнения, суждения, опыта, знаний.

Достоверность

Информация достоверна, если она точно, правдиво отражает состояние или процесс, происходящий с тем объектом, о котором идет речь.

Объективная информация всегда достоверна, но достоверная информация может быть как объективной, так и субъективной.

Недостоверной информация может быть по следующим причинам:

— преднамеренное искажение (дезинформация);

— искажение в результате воздействия помех;

— в случае, когда значение реального факта приуменьшается или преувеличивается (слухи, реклама).

Полнота

Информация полна, если ее достаточно для понимания и принятие решения.

Неполная информация может привести к ошибочному выводу или решению.

Избыток информации может быть также вреден при принятии решения, как и ее недостаток.

Актуальность (своевременность)

Информация актуальна, если она важна, существенна для настоящего времени. Только вовремя полученная информация может принести необходимую пользу. Неактуальной информация может быть по трем причинам, когда она является:

— устаревшей (прошлогодняя газета);

— преждевременной (прогноз погоды на лето, данный в январе);

— незначимой, ненужной (сообщение в российской прессе о том, что в Италии снижены цены на проезд в транспорте н 5%).

Разобрать пример в учебнике «Информатика и ИКТ», стр. 32.

Ценность (полезность)

Полезность информации оценивается по тем задачам, которые мы можем решить с ее помощью.

Оценка полезности информации всегда субъективна, то, что полезно для одного человека, может быть совершенно бесполезно для другого.

С точки зрения техники свойство полезности рассматривать бессмысленно, так как задачи машине ставит человек.

Понятность

Информация понятна, если она выражена на языке доступном для получателя информации. Даже самая актуальная и достоверная информация будет для вас бесполезной, если она выражена на незнакомом языке.

Агрегированность

Данное свойство представляет собой степень укрупнения или детализации информации.

Эргономичность

Свойство, характеризующее удобство формы или объема информации с точки зрения данного потребителя. Компактность, удобная форма представления информации облегчает понимание и усвоение информации.

Любую информацию можно характеризовать с точки зрения ее объективности, достоверности, полноты, актуальности. Полезности и понятности.

Выполнения заданий (Слайд 13):

Виды информации (Слайд 14-17)

По способу

представления

По степени значимости

По способу

восприятия

— текстовая (знаки);

— графическая (знаки);

— числовая (знаки);

— звуковая (сигналы);

— смешанная (знаки и сигналы).

Личная

— знания, умения;

— прогнозы, планы;

— чувства, интуиция;

— опыт, наследственная память.

— визуальная;

— аудильная;

— тактильная;

— вкусовая;

— обонятельная.

Специальная

— научная;

— производственная;

— техническая;

— управленческая.

Общественная

— общественно-политическая;

— научно-популярная;

— обыденная;

— эстетическая.

— Каким образом человек получает различную информацию? (С помощью органов чувств).

Студенты приводят примеры на каждый вид информации.

Интересный факт

— 80-90% информации человек получает визуально;

— 10-15% информации человек получает аудильно;

— 1-5% человек получает остальными органами чувств.

Выполнения заданий (Слайд 18-19):

Информационные объекты (Слайд 20)

Одним из основных понятий информатики (наряду с понятием «информация») является «объект».

  • Под объектом будем понимать любой предмет, явление, процесс или состояние, которое воспринимается нашим сознанием как некое целое, характеризуется некими признаками и имеет имя.

Любой реально существующий объект имеет имя (название), которое является как бы уникальной меткой объекта, позволяющее выделить этот объект среди других.

Началом времени существования любого объекта является момент его возникновения. Окончание времени существования объекта – момент уничтожения объекта или переход в качественно новое состояние с изменением существенных признаков.

Все объекты условно делятся на 2 вида: активные и пассивные (Слайд 20).

  • Активные объекты – это объекты, которые могут проявлять свое поведение без воздействия со стороны других объектов (Человек, компьютерные вирусы).

  • Пассивные объекты – это объекты, которые могут изменять свое состояние только под воздействием других объектов, а их поведение проявляется только тогда, когда к ним обращаются активные объекты (Инструменты, тексты, рисунки, данные в памяти компьютера).

Игра «Активные и пассивные объекты».

Студенты делятся на две группы. Из предложенных картинок одна группа должна назвать активные объекты, другая называет пассивные объекты.

Всякий объект отличается от других объектов признаками.

— Что будем понимать под признаком?

  • Под признаком в информатике будем понимать свойство, состояние, поведение, действие объекта или их совокупность (Слайд 21).

Игра «Объекты вокруг нас».

Студенты по очереди называют объекты, которые находятся вокруг в кабинете. Называть объект нужно в алфавитном порядке и указывать его признаки.

  1. Обобщение и систематизация знаний

Обобщение изученного материала через составление шпаргалки по теме «Информация. Информационные объекты». Шпаргалка — информация, формулировка, правило и т.д. в сжатом виде.

  1. Рефлексия учебной деятельности

«Слон».

Студентам предлагается на листочках нарисовать слона. Если студент выделяет:

— уши – значит, студент внимательно слушал, и при этом воспринимает больше информации на слух.

— глаза – внимательно смотрел, воспринимает больше зрительно;

— хобот – символизирует знания, которые студенты приобрели;

— голова – это мыслительные процессы;

Посмотреть на соотношение головы и туловища: большая голова – автор рисунка больше действует головой;

— ноги тонкие – неуверенность.

Листочки собираются преподавателем для дальнейшего анализа работы студента на занятии.

Давайте
подумаем об информации как о сигнале. Мы знаем, что сигнал рассматривается с
позиции носителя информации по техническим средствам передачи. Какие виды
информации различают в системах передачи информации?

Для передачи информации, или, правильнее сказать, данных, используется физический процесс, который может быть описан математической формулой и называется сигналом. Именно сигналы различают по способу их представления как аналоговые и дискретные.

В литературе постоянно ставят знак равенства между дискретными и цифровыми сигналами. Но их все-таки необходимо их различать.

Каковы различия между аналоговыми, дискретными и цифровыми сигналами?

Аналоговая информация характеризуется плавным изменением ее параметров. Основные параметры наиболее простых синусоидальных аналоговых сигналов могут непрерывно и плавно меняться.

Дискретная информация базируется на ряде фиксированных уровней представления заданных параметров, взятых в определенные промежутки времени. Если этих уровней много, можно говорить о цифровом представлении информации, то есть когда в определенные дискретные моменты они принимают конкретные дискретные значения. К счастью, аналоговую информацию легко преобразовать в цифровую. Это делают так называемые аналого-цифровое преобразователи (АЦП). Обратное преобразование обеспечивают цифроаналоговые преобразователи (ЦАП).

В качестве носителей аналоговой информации могут использоваться различные физические величины, принимающие различные значения на некотором интервале, например, электрический ток, радиоволна и т.д. При дискретизации, то есть при преобразовании непрерывных изображений и звука в набор дискретных значений в форме кодов, за основу берется какое-либо конкретное значение, а любые другие, отличающиеся от нормы, просто игнорируются.

Какие устройства можно отнести к аналоговым, а какие – к дискретным?

Аналоговыми устройствами являются:

· Телевизор — луч кинескопа непрерывно перемещается по экрану, чем сильнее луч, тем ярче светится точка, в которую он попадает; изменение свечения точек происходит плавно и непрерывно;

· Проигрыватель грампластинок – чем больше высота неровностей на звуковой дорожке, тем громче звучит звук;

· Телефон – чем громче мы говорим в трубку, тем выше сила тока, проходящего по проводам, тем громче звук, который слышит собеседник.

· К дискретным устройствам относятся:

· Монитор – яркость луча изменяется не плавно, а скачкообразно (дискретно). Луч либо есть, либо его нет. Если луч есть, то мы видим яркую точку (белую или цветную). Если луча нет, мы видим черную точку. Поэтому изображение на экране монитора получается более четким, чем на экране телевизора;

· Проигрыватель аудиокомпакт-дисков – звуковая дорожка представлена участками с разной отражающей способностью;

· Струйный принтер – изображение состоит из отдельных точек разного цвета.

Человек, благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а в компьютере информация представлена в цифровом виде. Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения или звукового сигнала на отдельные элементы.

Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.

При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования – на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов.

Первый способ часто называется также модуляцией или аналоговой модуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала.

Второй способ обычно называют цифровым кодированием. Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации.

В настоящее время все чаще данные, изначально имеющие аналоговую форму (речь, телевизионное изображение), передаются по каналам связи в дискретном виде, то есть в виде последовательности единиц и нулей. Процесс представления аналоговой информации в дискретной форме называется дискретной модуляцией. Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, типичным представителем которых является канал тональной частоты (телефонная сеть).

В простых вычислительных машинах, таких, как цифровые электромеханические или аналоговые, перенастройка на различные задачи осуществлялась с помощью изменения системы связей между элементами на специальной коммутационной панели. В современных универсальных компьютерах такие изменения производятся с помощью запоминания в специальном устройстве, накапливающем информацию, той или иной программы ее работы.

В отличие от аналоговых машин, оперирующих непрерывной информацией, современные компьютеры имеют дело с дискретной информацией, на входе и выходе которых в качестве такой информации могут выступать любые последовательности десятичных цифр, букв, знаков препинания и других символов. Внутри системы эта информация кодируется в виде последовательности сигналов, принимающих лишь два различных значения.

В то время как возможности аналоговых машин ограничены преобразованиями строго ограниченных типов сигналов, современные компьютеры обладают свойством универсальности, иными словами, компьютер может производить преобразования любых буквенно-цифровых данных благодаря программе, составленной для выполнения той или иной задачи. Эта способность компьютера достигается за счет универсальности его системы команд, то есть элементарных преобразований информации.

Свойство универсальности компьютера не ограничивается возможностью оперирования одной лишь буквенно-цифровой информацией. В данном виде может быть представлена (закодирована) любая дискретная информация, а также – с любой заданной степенью точности – произвольная непрерывная информация. Таким образом, компьютеры могут рассматриваться как универсальные преобразователи информации. Свойство универсальности современных компьютеров открывает возможность моделирования с их помощью любых других преобразователей информации, в том числе любых мыслительных процессов.

Технологии цифровой обработки акустических сигналов и изображений находят все более широкое применение в различных областях, в частности при идентификации пользователей или для построения многоуровневых систем защиты. Вместе с тем в перечне основных предъявляемым к соответствующим системам требований на первом месте стоит универсальность, быстрота и эффективность выполнения различных процедур обработки на основе использования стандартных недорогих технических средств, входящих в комплект традиционной офисной техники и компьютерной телефонии: ПК, сканера, принтера, звуковой платы, модема. Для реализации таких систем нужны подходы, позволяющие обрабатывать акустический сигнал и речь.

Практически 80% информации человек получает через зрение, что означает доминирование зрительных рецепторов в жизнедеятельности человека. Вся информация в аппарате мышления человека сохраняется в виде образов, причем в этом образе сконцентрирована информация, полученная всеми рецепторами человека. Можно сделать вывод, что информация в памяти человека хранится в виде графических объектов. Развивая гипотезу о том, что любая информация, получаемая человеком извне, проходит стадию преобразования в изображения с последующей их целенаправленной обработкой, можно вывести последовательность процедур, пригодную для реализации в автоматизированных системах обработки данных различного рода, в том числе и в речи:

1. Предобработка, когда независимо от вида полученной информации осуществляется ее преобразование к общему виду первичных описаний в виде двухмерных матриц данных, имеющих неотрицательные значения, которые можно рассматривать как изображения, образы;

2. Обработка предполагает, что на основе каких-либо общих принципов, методов и алгоритмов осуществляются преобразования полученных первичных данных для достижения поставленных целей (сжатие, «шум очистка», сравнение, распознавание и др.);

3. Получение новых знаний и принятие решений основываются на заключении из характера и вида полученной из внешнего мира информации, а также результатов ее обработки для выполнения конкретных действий в соответствии с общей стратегией поведения человека.

Практическая значимость этой гипотезы состоит в том, что интеллектуальные возможности человека по анализу и обработке визуальной информации, а также наработанный научный потенциал в области восстановления, распознавания и обработки изображений можно распространить сегодня на существующие технологии обработки информации иного рода, в том числе на акустические сигналы и речь.

Люди воспринимают пространство как «глубину», и изображения, формируемые мысленным взором, представляются им трехмерными. Однако в точных дисциплинах редко применяется обработка трехмерных изображений, что объясняется очевидными техническими трудностями работы с ними, а также недостаточным пониманием природы процесса восприятия изображений. В большинстве практических приложений исследователи имеют дело с квазитрехмерными изображениями, когда по двум известным параметрам, например, частоте и времени, строится некая двухмерная матрица, значения которой определяются значениями третьего известного параметра, например, мощностью и амплитудой рассчитанного мгновенного спектра.


Представление информации в двоичной системе счисления.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 — это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710

Почему двоичная система счисления так распространена? Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

К достоинству двоичной системы счисления относится – простота совершаемых операций, возможность автоматической обработки информации с использованием двух состояний элементов ПК и операцию сдвиг

Кодирование – это операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы.

Декодирование – расшифровка кодированных знаков, преобразование кода символа в его изображение

Двоичное кодирование – кодирование информации в виде 0 и 1

Способы кодирования и декодирования информации в компьютере, в первую очередь, зависит от вида информации, а именно, что должно кодироваться:

· числа

· символьная информация (буквы, цифры, знаки)

· графические изображения

· звук

Двоичное кодирование чисел

Для записи информации о количестве объектов используются числа.

Числа записываются с использованием особых знаковых систем, которые называют системами счисления.

100 → 11001002

Система счисления – совокупность приемов и правил записи чисел с помощью определенного набора символов.

Все системы счисления делятся на две большие группы:

ПОЗИЦИОННЫЕ: Количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра. (Например:0,7 70)

НЕПОЗИЦИОННЫЕ: Количественное значение цифры числа не зависит от того, в каком месте (позиции или разряде) записана та или иная цифра.(XIX)

Двоичное кодирование текста

Кодирование – присвоение каждому символу десятичного кода от 0 до 255 или соответствующего ему двоичного кода от 00000000 до 11111111

Присвоение символу определенного кода – это вопрос соглашения, которое фиксируется в кодовой таблице.

В качестве международного стандарта была принята кодовая таблица ASCII (American Standard Code for Information Interchange) :

· Коды с 0 по 32 (первые 33 кода) — коды операций (перевод строки, ввод пробела, т.е. соответствуют функциональным клавишам);

· Коды с 33 по 127 – интернациональные, соответствуют символам латинского алфавита, цифрам, знакам арифметических операций, знакам препинания;

· Коды с 128 по 255 – национальные, т.е. кодировка национального алфавита.

На 1 символ отводится 1 байт (8 бит), всего можно закодировать 28 = 256 символов

С 1997 года появился новый международный стандарт Unicode, который отводит для кодировки одного символа 2 байта (16 бит), и можно закодировать 65536 различных символов (Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, множество математических, музыкальных, химических и прочих символов)

В настоящий момент существует пять кодировок кириллицы: КОИ-8, CP1251, CP866, ISO, Mac. Для преобразования текстовых документов из одной кодировки в другую существуют программы, которые называются Конверторы.

Двоичное кодирование графики

Кодирование графической информации

Пространственная дискретизация – перевод графического изображения из аналоговой формы в цифровой компьютерный формат путем разбивания изображения на отдельные маленькие фрагменты (точки) где каждому элементу присваивается код цвета.

Пиксель – min участок изображения на экране, заданного цвета

Растровое изображение формируется из отдельных точек — пикселей, каждая из которых может иметь свой цвет. Двоичный код изображения, выводимого на экран храниться в видеопамяти. Кодирование рисунка растровой графики напоминает – мозаику из квадратов, имеющих определенный цвет

Качество кодирования изображения зависит от:

1) размера точки (чем меньше её размер, тем больше кол-во точек в изображении);

2) количества цветов (чем большее кол-во возможных состояний точки, тем качественнее изображение) Палитра цветов – совокупность используемого набора цвета

Качество растрового изображения зависит от:

1) разрешающей способности монитора – кол-во точек по вертикали и горизонтали.

2) используемой палитры цветов (16, 256, 65536 цветов)

3) глубины цвета – количество бит для кодирования цвета точки

Для хранения черно-белого изображения используется 1 бит.

Цветные изображения формируются в соответствии с двоичным кодом цвета, который хранится в видеопамяти. Цветные изображения имеют различную глубину цвета. Цветное изображение на экране формируется за счет смешивания трех базовых цветов – красного, зеленого и синего. Для получения богатой палитры базовым цветам могут быть заданы различные интенсивности.

Двоичное кодирование звука

В аналоговой форме звук представляет собой волну с непрерывно меняющейся амплитудой и частотой. На компьютере работать со звуковыми файлами начали с начала 90-х годов. В основе кодирования звука с использованием ПК лежит – процесс преобразования колебаний воздуха в колебания электрического тока и последующая дискретизация аналогового электрического сигнала. Кодирование и воспроизведение звуковой информации осуществляется с помощью специальных программ (редактор звукозаписи). Качество воспроизведения закодированного звука зависит от – частоты дискретизации и её разрешения (глубины кодирования звука — количество уровней)

Временная дискретизация – способ преобразования звука в цифровую форму путем разбивания звуковой волны на отдельные маленькие временные участки, где амплитуды этих участков квантуются (им присваивается определенное значение).

Это производится с помощью аналого-цифрового преобразователя, размещенного на звуковой плате. Таким образом, непрерывная зависимость амплитуды сигнала от времени заменяется дискретной последовательностью уровней громкости. Современные 16-битные звуковые карты кодируют 65536 различных уровней громкости или 16-битную глубину звука (каждому значению амплитуды звук. сигнала присваивается 16-битный код)

Качество кодирования звука зависит от:

1) глубины кодирования звука — количество уровней звука

2) частоты дискретизации – количество изменений уровня сигнала в единицу времени (как правило, за 1 сек).

N=2i

N – количество различных уровней сигнала

i – глубина кодирования звука

Информационный объем звуковой информации равен:

I = i * k* t

где i – глубина звука (бит)

K – частота вещания (качество звука) (Гц) (48 кГц – аудио CD)

t – время звучания (сек)

Представление видеоинформации

В последнее время компьютер все чаще используется для работы с видеоинформацией. Простейшей такой работой является просмотр кинофильмов и видеоклипов. Следует четко представлять, что обработка видеоинформации требует очень высокого быстродействия компьютерной системы.

Что представляет собой фильм с точки зрения информатики? Прежде всего, это сочетание звуковой и графической информации. Кроме того, для создания на экране эффекта движения используется дискретная по своей сути технология быстрой смены статических картинок. Исследования показали, что если за одну секунду сменяется более 10-12 кадров, то человеческий глаз воспринимает изменения на них как непрерывные.


8. Универсальность дискретного представления (цифрового) представления информации.

Чтобы сообщение было передано от источника к получателю, необходима некоторая материальная субстанция – носитель информации. Сообщение передаваемое с помощью носителя назовём сигналом. В общем случае сигнал – это изменяющийся во времени физический процесс. Характеристика которая используется для представления сообщений называется параметром сигнала.

В случае когда параметр сигнала принимает последовательное во времени конечное число значений сигнал называется дискретным, а сообщение передаваемое с помощью такого сигнала – дискретным сообщением. Информация, передаваемая источником в этом случае тоже является дискретной. Если же источник вырабатывает непрерывное сообщение то соответствующая информация называется непрерывной.

Пример дискретного сообщения – процесс чтения книги (информация в письменном виде), пример непрерывного сообщения человеческая речь.

Непрерывное сообщение может быть представлено с помощью непрерывной функцией f(t), заданной на некотором отрезке .

Непрерывное сообщение преобразовать в дискретное (такая процедура называется дискредизацией). Область определения функции разбивается на равные промежутки dt (равномерная дискредизация), и непрерывная функция заменяется импульсной, причём с одинаковой частотой. Получается дискретное представление непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента. Таким образом, любое сообщение может быть представлено как дискретное.

Возможность дискретизации непрерывного сигнала с любой желаемой точностью принципиально важна с точки зрения информатики. Компьютер – цифровая машина, т.е. внутренне представление информации в нем дискретно. Дискретизация входной информации позволяет сделать её пригодной для компьютерной обработки.

9. Представление информации в двоичной системе счисления.

По своему назначению компьютер — универсальное, программно-управляемое автоматическое устройство для работы с информацией. Из свойства универсальности следует то, что компьютер осуществляет все три основных типа информационных процессов: хранение, передачу и обработку информации. Современные компьютеры работают со всеми видами информации: числовой, символьной, графической, звуковой. Информация, хранимая в памяти компьютера и предназначенная для обработки, называется данными.

Для представления всех видов данных в памяти компьютера используется двоичный алфавит. Однако интерпретация последовательностей двоичных цифр для каждого вида данных своя. Еще раз подчеркнем, что речь идет о внутреннем представлении данных, в то время как внешнее представление на устройствах ввода-вывода имеет привычную для человека форму.

Представление числовой информации. Исторически первым видом данных, с которым стали работать компьютеры, были числа. Первые ЭВМ использовались исключительно для математических расчетов. В соответствии с принципами Джона фон Неймана, ЭВМ выполняет расчеты в двоичной системе счисления. Вопрос о внутреннем (машинном) представлении чисел рассмотрим несколько подробнее, чем это делается в учебниках.

Структурные единицы памяти компьютера — бит, байт и машинное слово. Причем понятия бита и байта универсальны и не зависят от модели компьютера, а размер машинного слова зависит от типа процессора ЭВМ. Если машинное слово для данного компьютера равно одному байту, то такую машину называют 8-разрядной (8 бит); если машинное слово состоит из 2 байтов, то это 16-разрядный компьютер; 4-байтовое слово у 32-разрядных ЭВМ. Обсуждение вопроса о том, как представляются числа в памяти ЭВМ, будем вести на примере 16-разрядной машины.

Числа в памяти ЭВМ хранятся в двух форматах: в формате с фиксированной точкой и в формате с плавающей точкой. Под точкой здесь и в дальнейшем подразумевается знак разделения целой и дробной части числа. Формат с фиксированной точкой используется для хранения в памяти целых чисел. В этом случае число занимает одно машинное слово памяти (16 бит). Чтобы получить внутреннее представление целого положительного числа Л^в форме с фиксированной точкой нужно:

1) перевести число N в двоичную систему счисления;

2) полученный результат дополнить слева незначащими нулями до 16 разрядов.

Например, N = 160710 = 110010001112. Внутреннее представление этого числа в машинном слове будет следующим:

В сжатой шестнадцатеричной форме этот код запишется так: 0647.

Двоичные разряды в машинном слове нумеруются от 0 до 15 справа налево. Старший 15-й разряд в машинном представлении любого положительного числа равен нулю. Поэтому максимальное целое число в такой форме равно:

0111 1111 1111 11112 = 7FFF16 = (215- 1) = 3276710.

Для записи внутреннего представления целого отрицательного числа (-N) нужно:

1) получить внутреннее представление положительного числа N;

2) получить обратный код этого числа заменой 0 на 1 и 1 на 0;

3) к полученному числу прибавить 1.

Определим по этим правилам внутреннее представление числа 160710.

1) 0000 0110 0100 0111

2) 1111 1001 1011 1000

3)_______________ +1

1111 1001 1011 1001 — результат

Шестнадцатеричная форма результата: F9B9.

Описанный способ представления целого отрицательного числа называют дополнительным кодом. Старший разряд в представлении любого отрицательного числа равен 1. Следовательно, он указывает на знак числа и поэтому называется знаковым разрядом.

Представление символьной информации. В настоящее время одним из самых массовых приложений ЭВМ является работа с текстами. Термины «текстовая информация» и «символьная информация» используются как синонимы. В информатике под текстом понимается любая последовательность символов из определенного алфавита. Совсем не обязательно, чтобы это был текст на одном из естественных языков (русском, английском и др.). Это могут быть математические или химические формулы, номера телефонов, числовые таблицы и пр. Будем называть символьным алфавитом компьютера множество символов, используемых на ЭВМ для внешнего представления текстов.

— алфавит компьютера включает в себя 256 символов;

— каждый символ занимает 1 байт памяти.

Эти свойства символьного алфавита компьютера, в принципе, уже знакомы ученикам. Изучая алфавитный подход к измерению информации, они узнали, что один символ из алфавита мощностью 256 несет 8 бит, или 1 байт, информации, потому что 256 = 28. Но поскольку всякая информация представляется в памяти ЭВМ в двоичном виде, следовательно, каждый символ представляется 8-разрядным двоичным кодом. Существует 256 всевозможных 8-разрядных комбинаций, составленных из двух цифр «0» и «1» (в комбинаторике это называется числом размещений из 2 по 8 и равно 28): от 00000000 до 11111111. Удобство побайтового кодирования символов очевидно, поскольку байт — наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов — это вполне достаточное количество для представления самой разнообразной символьной информации.

Таблица кодировки — это стандарт, ставящий в соответствие каждому символу алфавита свой порядковый номер. Наименьший номер — 0, наибольший — 255. Двоичный код символа — это его порядковый номер в двоичной системе счисления. Таким образом, таблица кодировки устанавливает связь между внешним символьным алфавитом компьютера и внутренним двоичным представлением.

Международным стандартом для персональных компьютеров стала таблица ASCII. На практике можно встретиться и с другой таблицей — КОИ-8 (Код Обмена Информацией), которая используется в глобальных компьютерных сетях, на ЭВМ, работающих под управлением операционной системы Unix, а также на компьютерах типа PDP. К ним, в частности, относится отечественный школьный компьютер Электроника-УКНЦ.

Понятие о кодировании информации. Универсальность дискретного (цифрового) представления информации. Позиционные и непозиционные системы счисления. Алгоритмы перевода из десятичной системы счисления в произвольную и наоборот. Связь между двоичной, восьмеричной и шестнадцатеричной системами счисления. Двоичная арифметика

Понятие о кодировании информации. Универсальность дискретного (цифрового) представления информации. Позиционные и непозиционные системы счисления. Алгоритмы перевода из десятичной системы счисления в произвольную и наоборот. Связь между двоичной, восьмеричной и шестнадцатеричной системами счисления. Двоичная арифметика.

Для любой операции над информацией (даже такой простой, как сохранение) она должна быть как-то представлена (записана, зафиксирована). Следовательно, прежде всего необходимо договориться об определенном способе представления информации, т. е. ввести некоторые обозначения и правила их использования (порядок записи, возможности комбинации знаков и др.). Когда все это аккуратно определено, используя указанные соглашения, информацию можно записывать, причем с уверенностью, что она будет однозначно воспринята. Вследствие важности данного процесса он имеет специальное название — кодирование информации.

Проблема кодирования информации для компьютера естественным образом распадается на две составляющие: кодирование чисел и способ кодирования, который сводит информацию данного вида к числам. Согласно вопросу, мы здесь рассмотрим подробнее только первое направление.

Теоретической основой кодирования чисел является подробным образом развитая в математике теория систем счисления. Система счисления — это способ записи чисел с помощью фиксированного числа знаков. Последние имеют общепринятое название —
цифры.

Системы счисления весьма разнообразны. Прежде всего они делятся на позиционные и непозиционные. Позиционной называется система счисления, в которой количественный эквивалент цифры зависит от ее положения в записи числа; в противном случае система является непозиционной. Большинство используемых на практике систем позиционно, поскольку именно для них обеспечивается наиболее простая арифметика.
В частности, используемая в быту система представления чисел позиционная (сравните значение цифры 2 в записи чисел 132 и 123!). Что же касается непозиционных систем, то сюда относятся хорошо известный римский способ записи чисел, а также унарная система, с которой вы, вероятно, встречались в первом классе (вспомните счетные палочки!).

В основе большинства систем счисления лежит принцип разложения по степеням некоторого целого числа2 , которое называется основанием системы счисления. Для используемой в быту системы основанием служит число 10 и его степени (сотни, тысячи и т. д.); математики называют ее десятичной, или системой счисления с основанием 10. Попутно заметим, что для построенных рассматриваемым традиционным способом систем счисления основание равняется количеству различных цифр, требуемых для изображения произвольных чисел.

Важно понимать, что десятичная система счисления лишь одна из возможных и не имеет никаких принципиальных преимуществ перед системами с другими основаниями3 . Например, двенадцатеричная денежная система значительно удобнее десятичной: английский шиллинг удается поровну разделить между двумя, тремя, четырьмя, шестью и двенадцатью людьми, тогда как 10 рублей справедливо распределяется только на двоих, пятерых или десятерых.

Для производства электронной вычислительной техники значительное удобство представляет двоичная система. Для инженеров существенно проще создать электронные элементы с двумя устойчивыми состояниями, соответствующими базовым цифрам системы 0 и 1. Кроме того, все арифметические и логические (булевские) операции наиболее просто реализовываются именно на двоичной основе, а их теория разработана в мельчайших деталях. Заметим, что на преимущества двоичной системы при разработке ЭВМ Джон фон Нейман указывал в своей классической работе еще в 1946 году.

Кроме перечисленных достоинств, двоичная система имеет, конечно, и недостатки, среди которых в первую очередь необходимо назвать необходимость перевода данных из “человеческой” (десятичной) системы счисления в “машинную” (двоичную) и обратно, а также громоздкость записи двоичных чисел. Рассмотрим названные проблемы подробнее.

Поскольку с математической точки зрения системы счисления с любыми основаниями равноправны, существует единый алгоритм перевода чисел из одной системы счисления в другую. Он заключается в последовательном делении рассматриваемого числа на основание системы счисления. К сожалению, алгоритм требует проведения арифметических действий в той системе счисления, в которой представлено исходное число, поэтому удобен лишь для перевода из десятичной системы в произвольную, но не наоборот.

Частным случаем указанного выше способа является перевод из десятичной системы счисления в двоичную, который нужен, чтобы узнать представление в компьютере произвольного десятичного числа. Опуская подробности4 , напомним, как выглядит процесс перевода числа 2010 в двоичный код:

Остается “собрать” итоговое двоичное число из остатков от деления, не забывая при этом, что старшие разряды получаются всегда позднее, чем младшие. В итоге получим: (20)10 = (10100)2.

Что касается обратного перевода из двоичной системы в десятичную, то универсальный алгоритм деления на основание системы здесь также возможен, но, как уже говорилось, его непосредственная арифметическая реализация неудобна. Поэтому на практике используется иной алгоритм, базирующийся на другом универсальном свойстве, о котором уже упоминалось в связи с определением основания системы счисления. Речь идет о том, что запись произвольного числа в любой системе счисления суть его разложение по степеням основания. Для интересующего нас сейчас случая двоичной системы вычисления будут выглядеть, например, так:

(10100)2 = 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 0 x 20 =

= 16 + 4 = (20)10.

Подчеркнем, что в приведенных выше примерах рассматривалась связь десятичной системы именно с двоичной только потому, что последняя применяется в компьютерах5 . С математической точки зрения вместо двоичной можно взять систему с любым другим основанием.

Обратимся теперь к проблеме громоздкости двоичного кода. Если посмотреть на двоичное число, представляющее собой представление некоторого десятичного с весьма умеренным числом цифр (например, трех — или четырехзначного числа), то обнаружится, что выглядит это чрезмерно длинно. Более того, длинная “однообразная” цепочка из нулей и единиц очень плохо воспринимается глазами. Чтобы облегчить ситуацию, для более компактной записи используется восьмеричная или шестнадцатеричная система счисления. Особенностью данных оснований является тот факт, что и 8, и 16 есть степени двойки, а значит, перевод между ними и двоичной системой максимально прост. Учитывая, что 8 = 23, а 16 = 24, получаем, что каждая восьмеричная цифра объединяет ровно 3 двоичных разряда, а шестнадцатеричная — 4.

Отсюда немедленно следует алгоритм перевода из двоичной системы в восьмеричную (шестнадцатеричную):

··сгруппировать двоичные разряды справа налево по три (четыре); если в старшей (т. е. самой левой) группе битов не хватает, их можно дополнить слева незначащими нулями;

··заменить каждую из полученных групп соответствующей ей восьмеричной (шестнадцатеричной) цифрой.

Например:

110102 = 0001 1010 = 1A16.

Обратный переход еще проще: достаточно каждую восьмеричную (шестнадцатеричную) цифру заменить ее двоичным представлением, дополняя его при необходимости до трех (четырех) двоичных цифр нулями слева.

Для облегчения процессов перевода удобно составить таблицу соответствия между восьмеричными или шестнадцатеричными цифрами и их двоичными кодами.

Остается обсудить вопросы, связанные с двоичной арифметикой. Отметим, что арифметические действия в системах счисления с любыми основаниями производятся по одинаковым правилам. Единственное отличие состоит в том значении, при превышении которого возникает перенос в следующий разряд. В общепринятой десятичной системе “критическое” значение равно 10 (вспомните: “8 + 7 = 15, 5 пишем, 1 в уме”).
В двоичной системе, где нет никаких цифр, кроме 0 и 1, перенос наступает, когда в разряде получается результат, равный 2 (или больше). Нетрудно сообразить, что минимальное значение, при котором возникает перенос, равно количеству цифр и, следовательно, основанию системы счисления.

В свете последнего вывода можно сформулировать правила арифметических операций, которые не зависят от применяемой системы счисления. Покажем, как это сделать на примере сложения.

Сложение двух чисел в системе счисления с основанием N осуществляется поразрядно от младших разрядов к старшим (“справа налево”, если смотреть на запись числа). Когда сумма данного разряда S не превышает значения N, результат сложения является окончательным. Если же S N, то происходит перенос в старший (“более левый”) разряд, причем каждая единица переноса уменьшает значение S на величину N.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *