При свободных электромагнитных колебаниях

Содержание

Электромагнитные колебания и волны

Свободные электромагнитные колебания. Колебательный контур

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур — это замкнутый контур, образованный последовательно соединенными конденсатором и катушкой.

Сопротивление катушки ​\( R \)​ равно нулю.

Полная энергия системы будет равна энергии электрического поля:

Конденсатор начинает разряжаться, по катушке начинает течь ток. Вследствие самоиндукции в катушке конденсатор разряжается постепенно.

Полная энергия системы в этот момент времени равна энергии магнитного поля:

В следующий момент времени ток течет в том же направлении, постепенно (вследствие явления самоиндукции) уменьшаясь до нуля. Конденсатор перезаряжается. Заряды обкладок имеют заряды, по знаку противоположные первоначальным.

В момент времени ​\( t_3=T/2 \)​ заряд конденсатора равен ​\( q_m \)​, напряжение равно ​\( U_m \)​, сила тока равна нулю.

Полная энергия системы равна энергии электрического поля конденсатора.

Затем конденсатор снова разряжается, но ток через катушку течет в обратном направлении.

В момент времени ​\( t_4=3T/4 \)​ сила тока в катушке достигает максимального значения, напряжение на конденсаторе и его заряд равны нулю. С этого момента ток в катушке начинает убывать, но не сразу (явление самоиндукции). Энергия магнитного поля переходит в энергию электрического поля. Конденсатор начинает заряжаться, и через некоторое время его заряд равен первоначальному, а сила тока станет равной нулю.

Через время, равное периоду ​\( T \)​, система возвращается в начальное состояние. Совершилось одно полное колебание, дальше процесс повторяется.

Важно!
Колебания, происходящие в колебательном контуре, – свободные. Они совершаются без какого-либо внешнего воздействия — только за счет энергии, запасенной в контуре.

В контуре происходят превращения энергии электрического поля конденсатора в энергию магнитного поля катушки и обратно. В любой произвольный момент времени полная энергия в контуре равна:

где ​\( i, u, q \)​ – мгновенные значения силы тока, напряжения, заряда в любой момент времени.

Эти колебания являются затухающими. Амплитуда колебаний постепенно уменьшается из-за электрического сопротивления проводников.

Вынужденные электромагнитные колебания. Резонанс

Вынужденными электромагнитными колебаниями называют периодические изменения заряда, силы тока и напряжения в колебательном контуре, происходящие под действием периодически изменяющейся синусоидальной (переменной) ЭДС от внешнего источника:

где ​\( \varepsilon \)​ – мгновенное значение ЭДС, \( \varepsilon_m \) – амплитудное значение ЭДС.

При этом к контуру подводится энергия, необходимая для компенсации потерь энергии в контуре из-за наличия сопротивления.

Резонанс в электрической цепи – явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре с малым активным сопротивлением при совпадении частоты вынужденных колебаний внешней ЭДС с частотой собственных колебаний в контуре.

Емкостное и индуктивное сопротивления по-разному изменяются в зависимости от частоты. С увеличением частоты растет индуктивное сопротивление, а емкостное уменьшается. С уменьшением частоты растет емкостное сопротивление и уменьшается индуктивное сопротивление. Кроме того, колебания напряжения на конденсаторе и катушке имеют разный сдвиг фаз по отношению к колебаниям силы тока: для катушки колебания напряжения и силы тока имеют сдвиг фаз ​\( \varphi_L=-\pi/2 \)​, а на конденсаторе \( \varphi_C=\pi/2 \)​. Это означает, что когда растет энергия магнитного поля катушки, то энергия электрического поля конденсатора убывает, и наоборот. При резонансной частоте индуктивное и емкостное сопротивления компенсируют друг друга и цепь обладает только активным сопротивлением. При резонансе выполняется условие:

Резонансная частота вычисляется по формуле:

Важно!
Резонансная частота не зависит от активного сопротивления ​\( R \)​. Но чем меньше активное сопротивление цепи, тем ярче выражен резонанс.

Чем меньше потери энергии в цепи, тем сильнее выражен резонанс. Если активное сопротивление очень мало ​\( (R\to0) \)​, то резонансное значение силы тока неограниченно возрастает. С увеличением сопротивления максимальное значение силы тока уменьшается, и при больших значениях сопротивления резонанс не наблюдается.

График зависимости амплитуды силы тока от частоты называется резонансной кривой. Резонансная кривая имеет больший максимум в цепи с меньшим активным сопротивлением.

Одновременно с ростом силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке. Эти напряжения становятся одинаковыми и во много раз больше внешнего напряжения. Колебания напряжения на катушке индуктивности и конденсаторе всегда происходят в противофазе. При резонансе амплитуды этих напряжений одинаковы и они компенсируют друг друга. Падение напряжения происходит только на активном сопротивлении.

При резонансе возникают наилучшие условия для поступления энергии от источника напряжения в цепь: при резонансе колебания напряжения в цепи совпадают по фазе с колебаниями силы тока. Установление колебаний происходит постепенно. Чем меньше сопротивление, тем больше времени требуется для достижения максимального значения силы тока за счет энергии, поступающей от источника.

Явление резонанса используется в радиосвязи. Каждая передающая станция работает на определенной частоте. С приемной антенной индуктивно связан колебательный контур. При приеме сигнала в катушке возникают переменные ЭДС. С помощью конденсатора переменной емкости добиваются совпадения частоты контура с частотой принимаемых колебаний. Из колебаний всевозможных частот, возбужденных в антенне, контур выделяет колебания, равные его собственной частоте.

Резонанс может привести к перегреву проводов и аварии, если цепь не рассчитана на работу в условиях резонанса.

Гармонические электромагнитные колебания

Гармоническими электромагнитными колебаниями называются периодические изменения заряда, силы тока и напряжения, происходящие по гармоническому – синусоидальному или косинусоидальному – закону.

В электрических цепях это могут быть колебания:

Важно!
Если в начальный момент времени заряд имеет максимальное значение, а сила тока равна нулю, то колебания заряда совершаются по закону косинуса с начальной фазой, равной нулю. Если в начальный момент времени заряд равен нулю, а сила тока максимальна, то колебания заряда совершаются по закону синуса.

Сила тока равна первой производной заряда от времени:

Амплитуда колебаний силы тока равна:

Колебания заряда и напряжения в колебательном контуре происходят в одинаковых фазах. Амплитуда напряжения равна:

Колебания силы тока смещены по фазе относительно колебаний заряда на ​\( \pi/2 \)​.

Период свободных электромагнитных колебаний

Период свободных электромагнитных колебаний находится по формуле Томсона:

где ​\( L \)​ – индуктивность катушки, ​\( C \)​ – электроемкость конденсатора.

Циклическая частота: ​\( \omega=\frac{2\pi}{T}=\frac{1}{\sqrt{LC}} \)​

Важно!
Период и циклическая частота не зависят от начальных условий, а определяются только индуктивностью катушки и электроемкостью конденсатора. Амплитуда колебаний заряда и силы тока определяются начальным запасом энергии в контуре.

При свободных гармонических колебаниях происходит периодическое преобразование энергии. Период колебаний энергии в два раза меньше, чем период колебаний заряда, силы тока и напряжения. Частота колебаний энергии в два раза больше частоты колебаний заряда, силы тока и напряжения.

Переменный ток. Производство, передача и потребление электрической энергии

Переменным называется ток, изменяющийся по величине и направлению по гармоническому закону.

Переменный ток представляет пример вынужденных электромагнитных колебаний. Для описания переменного электрического тока используют следующие величины:

• мгновенное значение силы тока – i;

• мгновенное значение напряжения – u;

• амплитудное значение силы тока – Im;

• амплитудное значение напряжения –Um.

Цепь переменного тока представляет собой колебательный контур, к которому приложена внешняя синусоидальная ЭДС. В цепь переменного тока могут включаться различные нагрузки: резистор, катушка, конденсатор.

Активное сопротивление

Проводник, преобразующий всю энергию электрического тока во внутреннюю, называется активным сопротивлением ​\( R \)​. (Эту величину мы раньше называли сопротивлением.) Активное сопротивление зависит от материала проводника, его длины и площади поперечного сечения и не зависит от частоты переменного тока.

В проводнике с активным сопротивлением колебания силы тока и напряжения совпадают по фазе:

Мгновенное значение мощности: ​\( p=i^2R, \)​

среднее значение мощности за период: ​\( \overline{p}=\frac{I_m^2R}{2}. \)​

Действующим значением силы переменного тока ​\( I_Д \)​ называют значение силы постоянного тока, который в том же проводнике выделяет то же количество теплоты , что и переменный ток за то же время:

Действующим значением напряжения переменного тока ​\( U_Д \)​ называют значение напряжения постоянного тока, который в том же проводнике выделяет то же количество теплоты, что и переменный ток за то же время:

Для цепи с активным сопротивлением выполняется закон Ома для мгновенных, амплитудных и действующих значений.

Индуктивное сопротивление

Катушка в цепи переменного тока имеет большее сопротивление, чем в цепи постоянного тока. В такой цепи колебания напряжения опережают колебания силы тока по фазе на ​\( \pi/2 \)​. Колебания силы тока и напряжения происходят по закону:

Амплитуда силы тока в катушке:

где ​\( L \)​ – индуктивность катушки.

Индуктивным сопротивлением ​\( X_L \)​ называют физическую величину, равную произведению циклической частоты на индуктивность катушки:

Индуктивное сопротивление прямо пропорционально частоте. Физический смысл индуктивного сопротивления: ЭДС самоиндукции препятствует изменению в ней силы тока. Это приводит к существованию индуктивного сопротивления, уменьшающего силу тока.

Для цепи с индуктивным сопротивлением выполняется закон Ома.

Емкостное сопротивление

В цепи постоянного тока через конденсатор ток не идет. Для переменного тока конденсатор обладает конечным сопротивлением, обратно пропорциональным его емкости. В цепи переменного тока сопротивление конденсатора меньше, чем в цепи постоянного тока.

В такой цепи колебания напряжения отстают от колебаний силы тока по фазе на ​\( \pi/2 \)​. Колебания силы тока и напряжения происходят по закону:

Амплитуда силы тока в катушке: ​\( I_m=C\omega U_m. \)​.

Емкостным сопротивлением ​\( X_C \)​ называют величину, обратную произведению циклической частоты на электроемкость конденсатора. Емкостное сопротивление обратно пропорционально частоте.

Физический смысл емкостного сопротивления: изменению переменного тока в любой момент времени противодействует электрическое поле между обкладками конденсатора.

В цепи переменного тока колебания силы тока и ЭДС происходят по синусоидальному закону с одинаковой циклической частотой ​\( \omega \)​ и разностью фаз ​\( \varphi \)​:

Соотношения амплитудных значений силы тока ​\( I_m \)​ и ЭДС ​\( \varepsilon_m \)​ в цепи переменного тока связаны между собой законом Ома для цепи переменного тока:

Он гласит: амплитуда силы переменного тока прямо пропорциональна амплитуде ЭДС и обратно пропорциональна полному сопротивлению цепи:

Величина ​\( Z \)​ называется полным сопротивлением цепи переменного тока.

Электрическая энергия имеет перед другими видами энергии следующие преимущества:

  • можно передавать на большие расстояния с малыми потерями;
  • удобно распределять между потребителями;
  • легко превращать в другие виды энергии.

В настоящее время производится и используется энергия переменного тока. Это связано с возможностью преобразовывать его напряжение и силу тока с малыми потерями энергии, что особенно важно при передаче электроэнергии на большие расстояния.

Различают следующие типы электростанций:

  • тепловые;
  • гидроэлектростанции;
  • атомные.

Получение переменного тока

Переменный ток получают с помощью генератора переменного тока.

Генератор переменного тока (электромеханический генератор переменного тока) – это устройство, преобразующее механическую энергию в электрическую. В основе работы генератора переменного тока лежит явление электромагнитной индукции.

Процесс получения переменного тока можно рассмотреть на примере вращения витка провода в однородном магнитном поле. Магнитный поток через площадь витка равен:

Если период вращения витка ​\( T \)​, то угол ​\( \alpha=\frac{2\pi t}{T}=\omega t \)​.

Тогда ​\( \Phi=BS\cos\omega t. \)​

ЭДС индукции изменяется по закону ​\( e=-\Phi’=BS\omega\sin\omega t=\varepsilon_m\sin\omega t. \)​

Амплитуда ЭДС ​\( \varepsilon_m=BS\omega. \)​

Если рамка содержит ​\( N \)​ витков, то ​\( \varepsilon_m=NBS\omega. \)​

Основные части генератора переменного тока:

  • обмотка статора с большим числом витков, в ней индуцируется ЭДС. Статор состоит из отдельных пластин из электротехнической стали для уменьшения нагрева от вихревых токов;
  • ротор (вращающаяся часть генератора) создает магнитное поле. Для получения нужной частоты переменного тока может иметь несколько пар полюсов. На гидроэлектростанциях в генераторе число пар полюсов равно 40–50, на тепловых электростанциях – 10-16;
  • клеммы для снятия напряжения.

Промышленные генераторы вырабатывают напряжение порядка 104 В. Промышленная частота переменного тока в нашей стране 50 Гц.

Передача электроэнергии

Электроэнергия производится в основном вдалеке от основных потребителей энергии, там, где есть топливные ресурсы.

С электростанции переменный ток по проводам линии электропередач (ЛЭП) поступает к различным потребителям электрической энергии. Для уменьшения потерь при передаче переменного тока необходимо использовать высокое напряжение. Чем длиннее линия, тем выше должно быть напряжение. В высоковольтных ЛЭП оно может достигать 500 кВ. Генераторы на электростанциях вырабатывают напряжение 16–20 кВ. Потребителям не нужно высокое напряжение. Возникает необходимость преобразования напряжения. С электростанции электрический ток поступает на повышающую подстанцию, затем передается по линии электропередач на понижающую подстанцию, где напряжение понижается до 6–10 кВ, а затем до 220–380 В. Для преобразования напряжения используют трансформатор.

Трансформатор – устройство, преобразующее переменное напряжение без изменения его частоты.

На схемах трансформатор обозначается:

Основные части трансформатора:

  • замкнутый сердечник из электротехнической стали;
  • две катушки-обмотки.

Катушка, подключаемая к источнику переменного напряжения, называется первичной обмоткой; катушка, к которой подключается нагрузка, – вторичной обмоткой.

Сердечник набирается из отдельных пластин для уменьшения потерь на нагревание вихревыми токами.

Принцип действия основан на явлении электромагнитной индукции. При подключении первичной обмотки к полюсам источника напряжения в ней возникает переменный ток. Напряжение изменяется с течением времени по гармоническому закону. С такой же частотой будут изменяться сила тока в катушке и магнитный поток, создаваемый этим током.

При изменении магнитного потока в каждом витке провода первичной обмотки возникает переменная ЭДС самоиндукции. Этот магнитный поток будет пронизывать и вторую катушку. В каждом ее витке возникает ЭДС индукции, изменяющаяся по гармоническому закону с той же частотой. Число витков в обмотках различно. Отношение ЭДС самоиндукции ​\( \varepsilon_1 \)​ в первичной обмотке к ЭДС индукции во вторичной обмотке \( \varepsilon_2 \) равно отношению числа витков в первичной обмотке ​\( N_1 \)​ к числу витков во вторичной обмотке ​\( N_2 \)​:

Режим работы

  • Режим холостого хода – разомкнута цепь вторичной обмотки. Напряжение ​\( U_2 \)​ на ее концах в любой момент времени равно ЭДС индукции ​\( \varepsilon_2 \)​, взятой с противоположным знаком. Поэтому можно записать:

где ​\( k \)​ – коэффициент трансформации.

Если ​\( k>1 \)​, то трансформатор понижающий, если \( k<1 \), то повышающий.

Мощность тока в обмотках одинакова. Поэтому увеличение напряжения на входе повышающего трансформатора в ​\( k \)​ раз сопровождается уменьшением силы тока во вторичной катушке во столько же раз.

В трансформаторе нет потерь на трение, так как нет вращающихся частей. Потери в сердечнике состоят из потерь на нагревание и на перемагничивание.

Отношение мощности ​\( P_2 \)​, потребляемой нагрузкой, к мощности ​\( P_1 \)​, потребляемой первичной обмоткой трансформатора, называется коэффициентом полезного действия трансформатора:

КПД трансформатора – 98%.

Потребление электрической энергии: промышленность – около 70%; сельское хозяйство; транспорт; строительство; средства связи; в быту.

Электромагнитное поле

Электромагнитное поле – это особый вид материи, с помощью которого осуществляется электромагнитное взаимодействие заряженных тел или частиц.

Это понятие было введено Д. Максвеллом, развившим идеи Фарадея о том, что переменное магнитное поле порождает вихревое электрическое поле.

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты. Вихревое электрическое поле порождает появление вихревого магнитного поля и так далее. Эти переменные электрическое и магнитное поля, существующие одновременно, и образуют единое электромагнитное поле.

Характеристиками этого поля являются вектор напряженности и вектор магнитной индукции.

Если электрический заряд покоится, то вокруг него существует только электрическое поле.

Если напряженность электрического поля равна нулю, а магнитная индукция отлична от нуля, то обнаруживается только магнитное поле.

Если электрический заряд двигается с постоянной скоростью, то вокруг него существует электромагнитное поле.

Максвелл предположил, что при ускоренном движении зарядов в пространстве будет возникать возмущение, которое будет распространяться в вакууме с конечной скоростью. Когда это возмущение достигнет второго заряда, то изменится сила, с которой электромагнитное поле действует на этот заряд.

При ускоренном движении заряда происходит излучение электромагнитной волны. Электромагнитное поле материально. Оно распространяется в пространстве в виде электромагнитной волны.

Свойства электромагнитных волн

Электромагнитная волна – это изменяющееся во времени и распространяющееся в пространстве электромагнитное поле.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом в 1864 году. Электромагнитные волны были открыты Г. Герцем.

Источник электромагнитной волны – ускоренно движущаяся заряженная частица – колеблющийся заряд.

Важно!
Наличие ускорения – главное условие излучения электромагнитной волны. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд.

Источниками электромагнитных волн служат антенны различных конструкций, в которых возбуждаются высокочастотные колебания.

Длина электромагнитной волны: ​\( \lambda=cT=\frac{c}{\nu}, \)​

где ​\( c \)​ – скорость электромагнитной волны, ​\( T \)​ – период, ​\( \nu \)​ – частота электромагнитной волны.

Свойства электромагнитных волн

  • В вакууме электромагнитная волна распространяется с конечной скоростью, равной скорости света 3·108 м/с.
  • Электромагнитная волна поперечная. Колебания векторов напряженности переменного электрического поля и магнитной индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости волны.
  • Электромагнитная волна переносит энергию в направлении распространения волны.

Важно!
Электромагнитная волна в отличие от механической волны может распространяться в вакууме.

Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени.

Обозначение – ​\( I \)​, единица измерения в СИ – ватт на квадратный метр (Вт/м2).

Важно!
Плотность потока излучения электромагнитной волны от точечного источника убывает обратно пропорционально квадрату расстояния от источника и пропорциональна четвертой степени частоты.

Электромагнитная волна обладает общими для любых волн свойствами, это:

  • отражение,
  • преломление,
  • интерференция,
  • дифракция,
  • поляризация.

Электромагнитная волна производит давление на вещество. Это означает, что у электромагнитной волны есть импульс.

Различные виды электромагнитных излучений и их применение

Электромагнитные излучения имеют длины волн от 10-12 до 104 м или частоты от 3·104 до 3·1020.

Различают следующие виды электромагнитных излучений:

  • радиоволны;
  • инфракрасное излучение;
  • видимое излучение (свет);
  • ультрафиолетовое излучение;
  • рентгеновское излучение;
  • гамма-излучение.

Границы между диапазонами условны, но излучения имеют качественные различия в свойствах. При переходе от излучений с малой частотой к излучениям с большей частотой волновые свойства проявляются слабее, а корпускулярные (квантовые) – сильнее.

Радиоволны

​\( \lambda \)​ = 103–10-3 м, ​\( \nu \)​ = 105–1011 Гц. Источники радиоволн – колебательный контур, вибратор.

Радиоволны делятся на:

  • длинные (длина больше 1 км);
  • средние (от 100 м до 1 км);
  • короткие (от 10 до 100 м);
  • ультракороткие (меньше 10 м).

Свойства: отражение, поглощение, интерференция, дифракция. Применение: радиосвязь, телевидение, радиолокация.

Радиосвязью называется передача информации с помощью радиоволн. Радиосвязь осуществляется с помощью модулированных радиоволн. Модуляцией радиоволны называется изменение ее параметров (амплитуды, частоты, начальной фазы) с частотой, меньшей частоты передаваемой волны.

Схема радиосвязи показана на рисунке:

Передача радиоволн. Генератор высокой частоты вырабатывает высокочастотные колебания несущей частоты. Звуковые колебания поступают в микрофон, где преобразуются в электромагнитные колебания. В модуляторе эти колебания преобразуются в модулированные колебания. После усиления модулированные колебания поступают в передающую антенну, которая излучает электромагнитные волны. На рисунке показан звуковой сигнал низкой частоты и модулированный высокочастотный сигнал.

Прием радиоволн. Электромагнитные колебания поступают в приемную антенну и вызывают электромагнитные колебания в приемном контуре. Эти колебания поступают в усилитель, а затем в детектор. В качестве детектора используют устройство с односторонней проводимостью. Это может быть полупроводниковый диод. В детекторе сигнал демодулируют (детектируют). Процесс детектирования заключается в выделении из высокочастотных модулированных колебаний колебаний низкой (звуковой) частоты. После сглаживания и усиления сигнал поступает в динамик. На рисунке показаны процессы детектирования (демодуляции) и сглаживания.

Радиолокацией называют обнаружение и определение местоположения объектов с помощью радиоволн. Излучение осуществляется короткими импульсами. В интервале времени между излучением двух последовательных импульсов осуществляется прием отраженного от объекта сигнала. Для радиолокации используют ультракороткие радиоволны.

Инфракрасное (тепловое) излучение

​\( \lambda \)​ = 10-3 – 10-7 м, ​\( \nu \)​ = 1011 – 1014 Гц. Источники – атомы и молекулы вещества.

Это излучение испускают все тела при температуре, отличной от 0 К. Свойства: нагревает вещество при поглощении; интерференция; дифракция; проходит через дождь, снег, дымку; невидимо; преломление, отражение. Применение: в приборах ночного видения, в физиотерапии, промышленности (для сушки). Регистрируют с помощью термопары, болометра, фотографическим методом.

Видимое излучение

​\( \lambda \) = 8·10-7 – 4·10-7 м, \( \nu \) = 4·1011 – 8·1014 Гц.

Это излучение воспринимается глазом. Свойства: отражение, преломление, поглощение, интерференция, дифракция.

Ультрафиолетовое излучение

\( \lambda \) = 10-8 – 4·10-7 м, \( \nu \) = 8·1014 – 3·1015 Гц. Источники – кварцевые лампы.

Ультрафиолетовое излучение дают светящиеся пары ртути и твердые тела, у которых температура выше 1000°С. Свойства: химическое действие; большая проникающая способность; биологическое действие; невидимо. Применение: в медицине, промышленности. Регистрируют фотографическими методами.

Рентгеновское излучение

\( \lambda \) = 10-8 – 10-11 м, \( \nu \) = 3·1016 – 3·1019 Гц. Источник – рентгеновские трубки.

Возникает при торможении быстрых электронов. Свойства: высокая химическая активность; биологическое действие; интерференция; дифракция на кристаллической решетке; высокая проникающая способность. Применение: в медицине, промышленности, науке.

Гамма-излучение

Длина волны меньше 10-11 м, частота от 1020 Гц и выше. Источник – ядерные реакции.

Свойства: высокая проникающая способность, сильное биологическое действие. Применение: в медицине, промышленности (дефектоскопия), науке.

Шкала электромагнитных излучений позволяет сделать вывод: все электромагнитные излучения обладают одновременно волновыми и квантовыми свойствами, которые дополняют друг друга.

Важно!
Волновые свойства сильнее выражены при малых частотах и больших длинах волн, а квантовые – при больших частотах и малых длинах волн.

Решение задач по теме «Электромагнитные колебания и волны»

По этой теме можно выделить четыре группы задач:

  • на определение параметров колебательного контура;
  • на уравнения гармонических электромагнитных колебаний;
  • на применение закона Ома;
  • на расчет мощности и КПД трансформатора.

Решение первой группы задач на определение параметров колебательного контура основано на использовании формулы Томсона (формулы периода свободных электромагнитных колебаний) и закона сохранения и превращения энергии в колебательном контуре. Поэтому необходимо записать уравнения для мгновенных значений заряда и напряжения на конденсаторе и силы тока в катушке; записать уравнение для полной энергии колебательного контура в произвольный момент времени. В качестве дополнительных формул могут понадобиться формулы электроемкости плоского конденсатора, индуктивности катушки и длины электромагнитной волны. Помните, что скорость распространения электромагнитной волны в вакууме равна скорости света – 3·108 м/с. В среде с показателем преломления ​\( n \)​ скорость света можно рассчитать по формуле: ​\( v=\frac{c}{n}. \)​

Важно!
Амплитудное значение напряжения – ​\( U_m=\frac{q_m}{C} \)​, амплитудное значение силы тока – ​\( I_m=q_m\omega \)​.

При решении второй группы задач на уравнения гармонических электромагнитных колебаний рекомендуется записать заданное в задаче уравнение и уравнение гармонических колебаний в общем виде. Сравнить эти уравнения и определить основные характеристики: амплитуду, частоту, фазу.

При решении задач на закон Ома нужно помнить, что электроизмерительные приборы показывают действующие значения напряжения и силы тока. Действующие значения величин пропорциональны амплитудным значениям. Важно помнить, что резонанс возникает при равенстве индуктивного и емкостного сопротивлений.

Решение четвертой группы задач на расчет мощности и КПД трансформатора опирается на знание формул КПД и мощности в цепи.

Основные формулы раздела «Электромагнитные колебания и волны»

Электромагнитные колебания и волны 5 (100%) 3 votes

Свободные электромагнитные колебания в контуре (Зеленин С.В.)

Введение

Успехи в изучении электромагнетизма в XIX веке привели к бурному развитию промышленности и техники, особенно это касается средств связи. Прокладывая линии телеграфа на большие расстояния, инженеры столкнулись с рядом необъяснимых явлений, которые побудили ученых к исследованиям. Так, в 50-х годах британский физик Уильям Томсон (лорд Кельвин) занялся вопросом о трансатлантической телеграфии. Учитывая неудачи первых практиков, он теоретически исследовал вопрос о распространении электрических импульсов вдоль кабеля. При этом Кельвин получил ряд важных выводов, которые в дальнейшем позволили осуществить телеграфирование через океан. Также в 1853 году британский физик выводит условия существования колебательного электрического разряда. Эти условия легли в основу всего учения об электрических колебаниях. На этом уроке и на других уроках данной главы мы рассмотрим некоторые основы теории электрических колебаний Томсона.

Электромагнитные колебания

Периодические или почти периодические изменения заряда, тока и напряжения в цепи называются электромагнитными колебаниями. Также можно дать еще одно определение.

Электромагнитными колебаниями называются периодические изменения напряженности электрического поля (E) и магнитной индукции (B).

Для возбуждения электромагнитных колебаний необходимо иметь колебательную систему. Простейшая колебательная система, в которой могут поддерживаться свободные электромагнитные колебания, называется колебательным контуром.

На рисунке 1 представлен простейший колебательный контур – это электрическая цепь, которая состоит из конденсатора и проводящей катушки, подсоединенной к обкладкам конденсатора.

Рис. 1. Колебательный контур

В таком колебательном контуре могут протекать свободные электромагнитные колебания.

Свободными называются колебания, которые осуществляются за счет запасов энергии, накопленной самой колебательной системой, без привлечения энергии извне.

Рассмотрим колебательный контур, изображенный на рисунке 2. Он состоит из: катушки с индуктивностью L, конденсатора с емкостью C, лампочки (для контроля наличия тока в цепи), ключа и источника тока.При помощи ключа конденсатор может быть подключен либо к источнику тока, либо к катушке. В начальный момент времени (конденсатор не подключен к источнику тока) напряжение между его обкладками равно 0.

Рис. 2. Колебательный контур

Заряжаем конденсатор путем замыкания его на источник постоянного тока.

При переключении конденсатора на катушку лампочка на короткое время загорается, то есть конденсатор быстро разряжается.

Рис. 3. График зависимости напряжения между обкладками конденсатора от времени при разрядке

На рисунке 3 изображен график зависимости напряжения между обкладками конденсатора от времени. На этом графике показан интервал времени с момента переключения конденсатора на катушку до момента, когда напряжение на конденсаторе равно нулю. Видно, что напряжение изменялось периодически, то есть в цепи протекали колебания.

Следовательно, в колебательном контуре протекают свободные затухающие электромагнитные колебания.

Механизм протекания свободных электромагнитных колебаний

В начальный момент времени (перед тем как замкнули конденсатор на катушку) вся энергия была сосредоточена в электрическом поле конденсатора (см. Рис. 4 а).

При замыкании конденсатора на катушку он начнет разряжаться. Ток разряда конденсатора, проходя по виткам катушки, создает магнитное поле. Это означает, что происходит изменение магнитного потока, охватывающего катушку, и в ней возникает ЭДС самоиндукции, которая препятствует мгновенному разряду конденсатора, следовательно, ток разряда нарастает постепенно. С ростом тока разряда убывает электрическое поле в конденсаторе, но возрастает магнитное поле катушки (см. Рис. 4 б).

В момент, когда поле конденсатора исчезнет (конденсатор разрядится), магнитное поле катушки будет максимальным (см. Рис. 4 в).

Далее магнитное поле будет ослабевать и в цепи появится ток самоиндукции, который будет препятствовать убыванию магнитного поля, следовательно, этот ток самоиндукции будет направлен так же, как и ток разряда конденсатора. Это приведет к перезарядке конденсатора. То есть, на той обкладке, где вначале был знак плюс, появится минус, и наоборот. Направление вектора напряженности электрического поля в конденсаторе также поменяется на противоположное (см. Рис. 4 г).

Ток в цепи будет ослабевать за счет возрастания электрического поля в конденсаторе и полностью исчезнет, когда поле в конденсаторе достигнет максимального значения (см. Рис. 4 д).

Рис. 4. Процессы, происходящие за один период колебаний

Далее конденсатор опять начнет разряжаться. Возникнет ток самоиндукции, который не даст конденсатору мгновенно разрядиться, и начнет возрастать магнитное поле (см. Рис. 4 е).

Когда электрическое поле конденсатора исчезнет, магнитное поле вновь достигнет своего максимума (см. Рис. 4 ж).

Начнется заряд конденсатора за счет тока индукции. По мере заряда ток будет ослабевать, а вместе с ним и магнитное поле (см. Рис. 4 з).

Когда конденсатор зарядится, ток в цепи и магнитное поле исчезнут. Система вернется в исходное состояние (см. Рис. 4 е).

Таким образом, мы рассмотрели процессы, происходящие за один период колебаний.

Математическое описание процессов, происходящих в колебательном контуре за один период колебаний

Значение энергии, сосредоточенной в электрическом поле конденсатора, в начальный момент времени вычисляется по формуле:

, где

– заряд конденсатора; C – электроемкость конденсатора.

Через четверть периода вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки, которая определяется по формуле:

,

где L – индуктивность катушки, I – сила тока.

Для произвольного момента времени сумма энергий электрического поля конденсатора и магнитного поля катушки является постоянной величиной (если пренебрегать затуханием):

Согласно закону сохранения энергии, полная энергия контура остается постоянной, следовательно, производная от постоянной величины по времени будет равна нулю:

Вычисляя производные по времени, получим:

Учтем, что мгновенное значение тока – это первая производная заряда по времени:

Следовательно:

Если мгновенное значение тока – это первая производная заряда по времени, то производная тока по времени будет второй производной заряда по времени:

Следовательно:

Мы получили дифференциальное уравнение, решением которого будет гармоническая функция (заряд гармонически зависит от времени):

, где

– циклическая частота колебаний, которая определяется значениями электроемкости конденсатора и индуктивности катушки:

Поэтому колебание заряда, а значит, тока и напряжения в цепи, будут гармоническими.

Так как период колебаний связан с циклической частотой обратной зависимостью, то период равен:

Данное выражение называется формулой Томсона.

Список литературы

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Раздел ОГЭ по физике: 3.14. Переменный электрический ток. Электромагнитные колебания и волны. Шкала электромагнитных волн

Электромагнитные колебания

☑ Электромагнитными колебаниями называются периодические изменения напряжённости E и индукции B. Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.

Обратие внимание! Существует близкий термин — электрические колебания. Это периодические ограниченные изменения величин заряда, тока или напряжения. Переменный электрический ток является одним из видов электрических колебаний.

Максвеллом было теоретически показано, а Герцем экспериментально доказано, что изменяющееся магнитное поле порождает переменное электрическое поле, в свою очередь переменное электрическое поле порождает переменное магнитное поле, т.е. в пространстве происходят изменения (колебания) характеристик электромагнитного поля.

Электромагнитные колебания происходят в колебательной системе, называемой колебательным контуром. Колебательный контур — это электрическая цепь, состоящая из конденсатора и катушки индуктивности.

Если зарядить конденсатор и затем замкнуть его на катушку, то по цепи пойдёт электрический ток. При этом конденсатор начнёт разряжаться. Сначала сила тока в цепи будет увеличиваться, и появится ток самоиндукции, препятствующий увеличению основного тока и направленный против него. Через 1/2 часть периода конденсатор полностью разрядится, а сила тока в катушке станет максимальной. Затем сила тока начнет уменьшаться. Ток самоиндукции, который при этом возникнет, будет стремиться поддержать основной ток и будет направлен так же, как и он. Через 1/4 часть периода ток прекратится, и конденсатор перезарядится. Затем пойдет обратный процесс.

Таким образом, в колебательном контуре происходят электромагнитные колебания, т.е. периодические изменения заряда, силы тока, электрического и магнитного полей. Колебания, происходящие в колебательном контуре, благодаря начальному запасу энергии в конденсаторе называются свободными. В процессе колебаний энергия извне в контур не поступает.

Минимальный промежуток времени, через который процесс в колебательном контуре полностью повторяется, называется периодом (Т) электромагнитных колебаний. За период колебаний заряд на обкладках конденсатора изменяется от максимального значения до следующего максимального значения того же знака, или сила тока изменяется от максимального значения до следующего максимального значения при том же направлении тока.

Характеризуя электромагнитные колебания, часто говорят об их частоте. Частотой (v) колебаний называют число полных колебаний в одну секунду. Частота обратна периоду колебаний. Единицей частоты является 1 Гц. Частоту электромагнитных колебаний часто измеряют в килогерцах (1 кГц = = 1000 Гц) и в мегагерцах (1 МГц = 1 000 000 Гц).

Электромагнитные волны

Подобно тому как механические колебания распространяются в пространстве в виде механических волн, электромагнитные колебания распространяются в пространстве в виде электромагнитных волн. Многочисленные эксперименты показывают, что электрическое и магнитное поля взаимосвязаны. Если в какой-либо точке пространства возникает переменное электрическое поле, то в соседних точках оно возбуждает переменное магнитное поле, которое, в свою очередь, возбуждает переменное электрическое поле и т.д. Таким образом, можно говорить об электромагнитном поле. Это поле и распространяется в пространстве.

☑ Процесс распространения периодически изменяющегося электромагнитного поля представляет собой электромагнитные волны.

Электромагнитные волны распространяются в вакууме со скоростью 300 000 км/с. Они характеризуются определённой длиной волны λ. Длина волны — это расстояние, на которое перемещается электромагнитная волна за время, равное периоду колебаний (Т). λ = сТ или λ = c/v, где с — скорость распространения электромагнитной волны, v — частота колебаний.

Электрически заряженные частицы могут колебаться с различной частотой. Соответственно, излучаемые при этом электромагнитные волны имеют разную длину волны. Поэтому диапазон частот электромагнитных волн очень широк: он лежит в пределах от 0 до 1022 Гц, а длина волны — в пределах от 10–14 м до бесконечности. По длине волны или по частоте электромагнитные волны можно разделить на восемь диапазонов. Обладая рядом общих свойств (интерференция, дифракция), волны разной частоты имеют и специфические свойства.

Переменный электрический ток

Любой ток, изменяющийся по времени, называют переменным. Чаще всего под переменным электрическим током понимают ток, изменяющийся по гармоническому закону.

Переменный электрический ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

Хотя переменный ток часто переводят на английский как alternating current, эти термины не являются эквивалентными. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: ≈ (знак синусоиды), или латинскими буквами AC.

Переменное напряжение, необходимое для возникновения переменного тока, получается с помощью генератора переменного тока. В простейшей модели генератора переменное напряжение возбуждается в замкнутой рамке сопротивлением R, которая равномерно вращается в однородном магнитном поле.

В этом случае сила переменного тока, текущего в рамке, определяется в соответствии с законом Ома:

Колебания напряжения на активном сопротивлении рамок совпадают по фазе с колебаниями силы тока.

Для характеристики действия переменного тока вводятся понятия действующей силы тока I и действующего напряжения U.

Действующей силой переменного тока I называют силу такого постоянного тока, который в том же проводнике и за то же время выделяет такое же количество тепла, что и данный переменный ток.

Действующим напряжением переменного тока U называют напряжение такого постоянного тока, который в том же проводнике и за то же время выделяет такое же количество тепла, что и данный переменный ток.

Действующие значения силы тока I и напряжения U определяются формулами:

где I, U — действующие значения тока и напряжения;
Im , Um — амплитудные значения тока и напряжения.

Амперметры и вольтметры, включенные в электрическую цепь переменного тока, измеряют действующие значения силы тока и напряжения.

Конспект урока «Электромагнитные колебания и волны».

Следующая тема: «Явления распространения света».

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии

«Физика — 11 класс»

Свободные и вынужденные электромагнитные колебания

Электромагнитными колебаниями называются периодические изменения заряда, силы тока и напряжения.

Обычно эти колебания происходят с очень большой частотой, значительно превышающей частоту механических колебаний.

Свободные электромагнитные колебания возникают при разрядке конденсатора через катушку индуктивности.
Если замкнуть обкладки заряженного кондесатора на катушку индуктивности, то при разрядке конденсатора через катушку в цепи можно наблюдать электромагнитные колебания, т.е. ток меняет свою величину и направление много раз.
Так как свободными колебаниями называются колебания, которые возникают в системе после выведения ее из положения равновесия, то колебательная система (конденсатор и катушка) выводится из равновесия при сообщении конденсатору заряда.
Зарядка конденсатора эквивалентна отклонению маятника от положения равновесия.

В электрической цепи можно получить и вынужденные электромагнитные колебания.
Вынужденными колебаниями называются колебания в цепи под действием внешней периодически изменяющейся электродвижущей силы.
Вынужденные колебания вызываются периодической ЭДС.

Колебательный контур. Превращение энергии при электромагнитных колебаниях

Простейшая система, в которой могут происходить свободные электромагнитные колебания называется колебательным контуром.
Колебателььный контур состоит из конденсатора и катушки, присоединенной к его обкладкам.

Для получения колебаний в контуре сначала надо зарядить конденсатор присоединив его на некоторое время к батарее, замкнув переключатель (положение1).

При этом конденсатор получит энергию.

где
qm — заряд конденсатора,
С — электроемкость конденсатора.
Между обкладками конденсатора возникнет разность потенциалов Um.

Ставим переключатель в положение 2.
Конденсатор начнет разряжаться, и в цепи появится электрический ток.
При появлении тока в цепи возникает ЭДС самоиндукции, препятствуя его увеличению, поэтому ток в цепи нарастает постепенно.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока в катушке, которая определяется формулой:

где
i — сила переменного тока;
L — индуктивность катушки.

Полная энергия W электромагнитного поля контура равна сумме энергий его магнитного и электрического полей:

В момент, когда конденсатор полностью разрядится (q = 0) энергия электрического поля станет равной нулю.
Энергия же магнитного поля тока, согласно закону сохранения энергии, будет максимальной.
В этот момент сила тока также достигнет максимального значения Im.

Несмотря на то что к этому моменту разность потенциалов на концах катушки становится равной нулю, электрический ток не может прекратиться сразу.
Этому препятствует явление самоиндукции: как только сила тока и созданное им магнитное поле начнут уменьшаться, возникает ЭДС самоиндукции, стремящаяся поддержать ток.

Конденсатор будет перезаряжаться до тех пор, пока сила тока, постепенно уменьшаясь, не станет равной нулю.
Энергия магнитного поля в этот момент также будет равна нулю, энергия электрического поля конденсатора опять станет максимальной.

После этого конденсатор вновь начнет перезаряжаться, и система возвратится в исходное состояние.

Если бы не было потерь энергии, то этот процесс продолжался бы сколь угодно долго.
Колебания были бы незатухающими.
Через промежутки времени, равные периоду колебаний, состояние системы в точности повторялось бы.
Полная энергия при этом сохранялась бы неизменной, и ее значение в любой момент времени было бы равно максимальной энергии электрического поля или максимальной энергии магнитного поля:

D действительности потери энергии неизбежны, т.к. катушка и соединительные провода обладают сопротивлением R, что ведет к постепенному превращению энергии электромагнитного поля во внутреннюю энергию проводника.

Итак, в колебательном контуре энергия электрического поля заряженного конденсатора периодически переходит в энергию магнитного поля тока.
При отсутствии сопротивления в контуре полная энергия электромагнитного поля остается неизменной.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Аналогия между механическими и электромагнитными колебаниями»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление. Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *