Уравнение плоского движения

Уравнения плоского движения твердого тела

Ускорения точек плоской фигуры

Мгновенный центр скоростей

Скорость точек плоской фигуры

Уравнения плоского движения твердого тела.

ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

ЛЕКЦИЯ 3

Учебные вопросы:

Плоским движением твёрдого тела называют такое движение, при котором все точки сечения тела движутся в своей плоскости.

Пусть твёрдое тело 1 совершает плоское движение .

Секущая плоскость в теле 1 образует сечение П, которое перемещается в секущей плоскости .

Если параллельно плоскости выполнить другие сечения тела, например через точки и т.д., лежащие на одном перпендикуляре к сечениям, то все эти точки и все сечения тела будут перемещаться одинаково.

Следовательно, движение тела в этом случае полностью определяется движением одного из его сечений в какой-либо из параллельных плоскостей, а положение сечения – положением двух точек этого сечения, например А и В .

Положение сечения П в плоскости Оху определяют положением отрезка АВ, проведённого в этом сечении. Положение двух точек на плоскости А() и В() характеризуется четырьмя параметрами (координатами), на которые накладывают одно ограничение — уравнение связи в виде длины отрезка АВ:

Поэтому положение сечения П в плоскости можно задать тремя независимыми параметрами — координатами точки А и углом, который образует отрезок АВ с осью Ох. Точку А, выбранную для определения положения сечения П, называют ПОЛЮСОМ.

При движении сечения тела его кинематические параметры являются функциями времени

Уравнения являются кинематическими уравнениями плоского (плоскопараллельного) движения твёрдого тела. Теперь покажем, что в соответствии с полученными уравнениями тело при плоском движении совершает поступательное и вращательное движения. Пусть на рис. сечение тела, заданное отрезком в системе координат Оху, переместилось из начального положения 1 в конечное положение 2.

Покажем два способа возможного перемещения тела из положения 1 в положение 2.

Первый способ. За полюс примем точку . Перемещаем отрезок параллельно самому себе, т.е. поступательно, по траектории ,до совмещения точек и . Получаем положение отрезка . Далее поворачиваем этот отрезок вокруг полюса на угол и получаем конечное положение плоской фигуры, заданное отрезком.

Второй способ. За полюс примем точку . Перемещаем отрезок параллельно самому себе, т.е. поступательно по траектории до совмещения точек и . Получаем положение отрезка . Далее поворачиваем этот отрезок вокруг полюса на угол и получаем конечное положение плоской фигуры, заданное отрезком .

Сделаем следующие выводы.

Уравнения плоского движения.

В предыдущей главе были рассмотрены два наиболее простых случая движения твердого тела: поступательное и вращательное вокруг неподвижной оси. Перейдем теперь к изучению более сложного случая движения – плоского — параллельного движения твердого тела, или (сокращённо) плоского движения. Под плоским движением понимают движение, при котором все точки твердого тела, расположенные в плоскостях, параллельных некоторой неподвижной плоскости, во все время движения остаются в тех же плоскостях. Если разбить мысленно тело на плоские сечения, параллельные заданной плоскости, то эти сечения будут скользить каждое в своей плоскости. Этот случай движения имеет большое техническое значение; ме­ханизмы, встречающиеся в технике, за немногочисленными исклю­чениями, представляют системы твердых тел, совершающих плоское движение. Вращение тела вокруг неподвижной оси является частным случаем плос

…Рис. 28 кого движения; движение колеса по прямолинейному пути дает еще один пример; плоское движение совершают также механизмы для вычерчивания разных кривых (эллипсограф, конхоидограф), всевозможные кулисные механизмы, эпициклические механизмы, применяемые в редукторах скоро стей, и т. д. Пусть тело А (рис. 28) совершает движение, параллельное пло­скости П. Проведем мысленно в теле ряд плоскостей П’, II», … , параллельных П. Тело разобьется на ряд плоских фигур S’, S»,… . Движение одной такой плоской фигуры вполне опреде­ляет движение всего твердого тела, так как плоскости, которыми мы разбили твердое тело, друг с другом не

Рис 29 изменно связаны и не могут двигаться друг по отношению к другу. Если мы возьмем в какой-нибудь фигуре S’ точку М и восста­вим в ней перпендикуляр к плоскости фигуры S, то точки М и М» фигур S’ и S», лежащие на этом перпендикуляре, будут иметь одинаковое движение, т. е. будут описывать одинаковые траектории, иметь одинаковые скорости, одинаковые ускорения. Таким образом, можно значительно упростить изучение плоскою движения твердого тела — достаточно изучить движение одной пло­ской фигуры в ее плоскости. Следует здесь отметить, что при плоском движении тела все перемещения, скорости и ускорения точек должны лежать в плоскости фигуры. Возьмем две системы осей в плоскости движения фигуры: одну систему Оху неподвижную, другую — О’х’у’, неизменно связанную с движущейся фигурой (рис. 29). Положение точки М фигуры в неподвижной плоскости будем определять вектор-радиусом , проведенным из начала О неподвижной системы осей; выбор рассматриваемой точки фигуры определяется указанием вектора ‘, проведеного из начала О’ подвижной системы. Вектор-радиус начала О’ относительно О обозначим через . Тогда

Проекции вектора (t) на оси х и у могут быть записаны в виде

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *