Методы селекции микроорганизмов

Бактерии, актиномицеты, микоплазмы, простейшие и одноклеточные эукариоты – это микроорганизмы, которые человек сумел применить в промышленном производстве, сельскохозяйственной деятельности, медицине.

Насчитывается примерно 100 тыс. видов микроорганизмов и около сотни из них активно используются людьми. В конце прошлого столетия особенно активно стали заниматься изучением генома микроорганизмов и разработали ряд методов управления биохимическими процессами.

Селекция микроорганизмов

Для эффективного производства необходимы такие качества микроорганизмов как:

  • Быстрый рост;
  • недорогие условия для размножения и жизнедеятельности бактерий;
  • недопустимость заражения людей мутированными микроорганизмами.

Основная задача селекционеров выводить новые штаммы, с точно установленными характеристиками и способствовать их внедрению в производство.

Биотехнология — наука, изучающая применение живых организмов и их биологических свойств, для выработки новых, полезных веществ используемых человеком. Бактерии, простейшие, грибы, клетки растений и животных являются основными объектами изучения биотехнологии.

Чем селекция микроорганизмов отличается от селекции растений и животных?

  • Для работы есть обилие исходного материала — за короткий промежуток времени на питательной среде вырастают миллионы колоний бактерий;
  • мутационные изменения можно увидеть уже в первом поколении, так как набор хромосом клеток простейших одинарный, что делает селекцию эффективней;
  • структура генома бактерий проще, чем у растительных и животных клеток. Поэтому не так трудно отрегулировать действие генов друг на друга.

Учитывая характеристики и особенности селекции микроорганизмов, были разработаны особые методы их исследований. Селекционеры используют такие методы селекции: генетическую инженерию, искусственный мутагенез и отбор.

Методы селекции микроорганизмов

Генетическая инженерия

Генетическая инженерия — метод, который дает возможность внедрять необходимый наследственный материал, полученный из клетки одного организма, в геном другого. Образованные таким путем микроорганизмы называются трансформированными.

В генной инженерии чаще всего используется Escherichia coli, бактерия, обитающая в кишечном тракте человека. Благодаря ей продуцируется гормон роста — соматотропин, инсулин, который прежде можно было получить только из клеток поджелудочных желез домашних животных, интерферон, используемый для лечения вирусных заболеваний.

Процесс получения трансформированных микроорганизмов делится на ряд последовательных стадий.

Генетическая инженерия

Стадии получения трансформированных микроорганизмов

Поиск нужных генов и вырезание их из генома. Это возможно благодаря действию специфичных ферментов — рестриктаз.

Образование субстрата — особой конструкции, в ее составе необходимая закодированная характеристика будет встроена в геном другой клетки. Для формирования субстрата используют двухцепочечные кольцевые молекулы (плазмиды).

Ген встраивают в плазмиду под действием ферментов, которые осуществляют лигирование – соединение двух молекул. Генетическая конструкция состоит из определенных частей — это промотор, терминатор, ген-оператор и ген-регулятор, которые нужны для контроля генов. В структуре новообразованной конструкции находятся также маркерные гены, которые обеспечивают проявление новых характеристик, отличающих ее от первичных клеток.

Трансформация — введение новой генетической информации в геном микроорганизма.

Скрининг — сортировка бактерий, выбор организмов с успешно внедренными характеристиками.

Дальнейшее размножение полученных бактерий.

Искусственный мутагенез

Для получения желаемых мутаций на микроорганизмы воздействуют рентгеновскими лучами, ультрафиолетом, химическими соединениями, что повышает скорость мутирования и его эффективность.

Искусственный отбор

Проводят отбор штаммов с высокой синтезирующей активностью.

Перед отбором производительных штаммов, селекционер длительное время работает с первоначальным геномом клеток. Используются разные методы перестройки генома: конъюгация, трансдукция, трансформация.

Конъюгация – перенос части генетического материала при непосредственном контакте двух бактериальных клеток, дала возможность создать штамм, который может утилизировать углеводороды нефти.

Амплификация — умножение числа копий необходимого гена. Благодаря амплификации многократно удалось повысить синтез антибиотиков.

Стимуляция мутаций — необходимый этап в селекции. Изменения генома микроорганизмов возникают не так часто как в клетках растений и животных. Но возможность выделения этой мутации у бактерий гораздо выше, чем у других организмов, потому что получить миллиарды колоний микроорганизмов можно легко и быстро.

Отбор по производительности (например, бактерий синтезирующих антибиотики) происходит по степени влияния трансформированного штамма бактерии на рост и размножение болезнетворного микроорганизма. Их селят на питательную среду и определяют активность штамма по диаметру очага, где рост патологических бактерий замедлен или отсутствует. Для дальнейшей работы используют самые продуктивные виды бактерий.

Так традиционные методы селекции микроорганизмов (мутагенез и искусственный отбор) дали возможность при селекции грибов Penicillium, ускорить синтез антибиотика пенициллина в тысячи раз соотносительно с первоначальным штаммом.

Значение и роль в биологии селекции микроорганизмов

Широко применяются в медицинской промышленности для изготовления лекарственных средств – антибиотиков, незаменимых при лечении бактериальных заболеваний. Необходимы для синтеза ферментов, витаминов, аминокислот.

Для производства продуктов питания применяются дрожжевые грибки, с помощью селекции выделяют виды, которые наиболее быстро вызывают брожение теста и повышают качество продукции.

Примером селекции микроорганизмов также служит использование новых штаммов для изготовления молочнокислых продуктов, виноделия.

В сельском хозяйстве для получения силоса или для защиты растений также используют трансформированные микроорганизмы.

Оцените, пожалуйста, статью. Мы старались:)

Биология в лицее

Основные направления селекции микроорганизмов

Микроорганизмы (микробы) – бактерии, микроскопические грибы и простейшие – играют важную роль в жизни природы и человека. Они используются в разных областях промышленности (в хлебопечении и виноделии, в производстве кормового белка, молочнокислых продуктов, антибиотиков, витаминов, гормонов, аминокислот, ферментов), в сельском хозяйстве (при производстве силоса), для биологической защиты растений и очистки сточных вод. В связи с этим развивается промышленная микробиология и ведется интенсивная селекционная работа по выведению новых штаммов микроорганизмов с повышенной продуктивностью веществ, необходимых человеку.

Микроорганизмам свойственна наследственная изменчивость – мутации. С помощью отбора мутаций создаются активные штаммы микроорганизмов, ценных для человека. Особенно широко и успешно в создании новых штаммов используется искусственный (индуцированный) мутагенез.

Методы селекции микроорганизмов. В основном это те же методы, которые используются и в селекции других организмов. Но микроскопические размеры и огромная скорость размножения микроорганизмов обусловливают разработку особых методов, ускоряющих процесс получения новых высокопродуктивных штаммов.

Генная инженерия представляет собой целенаправленные манипуляции с генетическим материалом в клетках микроорганизмов – это совокупность методов воздействия на ДНК, позволяющих переносить наследственную информацию из одного организма в другой. В частности, создаются новые комбинации генетического материала, способного, размножаясь в клетке–хозяине, синтезировать вещества, которые человек использует для своих нужд. Новые комбинации генетического материала сначала осуществляют in vitro, т. е. в пробирке. Путем гибридизации молекул ДНК от разных одноклеточных организмов получают молекулы, в которых содержатся новые, ранее отсутствовавшие в ней гены. Созданная таким способом гибридная молекула ДНК затем вводится в клетку–хозяина (обычно бактерий или дрожжей), которая после введения начинает синтезировать белок, кодируемый этими генами. Поскольку бактерии размножаются очень быстро, то таким способом удается получить сразу много идентичных копий от нужного гена и, следовательно, путем биосинтеза создать много нужных человеку веществ.

Таким путем получают белок инсулин, необходимый больным диабетом; интерферон, подавляющий размножение вирусов; антиген вируса гепатита, необходимый для борьбы с этим инфекционным заболеванием; гормоны роста человека и другие важные биологические вещества. Также примером применения генной инженерии является получение новых генетически модифицированных сортов зерновых культур.

Интерфероны (англ. interference — помеха, от лат. интер — между и ферио — ударять, поражать) — общее название, под которым в настоящее время объединяют ряд белков со сходными свойствами, выделяемых клетками организма в ответ на вторжение вируса.

Благодаря интерферонам клетки становятся невосприимчивыми по отношению к вирусу.

Механизм действия интерферонов следующий. При заражении клетки вирус начинает размножаться. Клетка-хозяин начинает в ответ на вирусную атаку выделение интерферона, который выходит из клетки и вступает в контакт с соседними клетками, делая их невосприимчивыми к вирусу. Он действует таким образом, чтобы подавить синтез вирусных белков или процессы сборки и выхода вирусных частиц (путём активации олигоаденилатциклазы). Таким образом, интерферон не обладает прямым противовирусным действием, но вызывает такие изменения в клетке, которые препятствуют в том числе и размножению вируса. Образование интерферона могут стимулировать не только интактные вирусы, но и различные другие агенты, например некоторые инактивированные вирусы, двухцепочечные РНК, синтетические двухцепочечные олигонуклеотиды и бактериальные эндотоксины.

Генная инженерия — совокупность приёмов, методов и технологий выделения генов из организма, осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия — важнейший инструмент биотехнологии.

Генетическая инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма (ГМО). В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат.

Как известно, в ДНК, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках — это мутации. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Клеточная инженерия – это метод конструирования клеток нового типа путем гибридизации их содержимого. При гибридизации искусственно объединяют целые клетки разных организмов, создавая новый гибридный геном (совокупность генов в гаплоидном наборе хромосом вида). Также путем манипуляций (реконструкции) создают новую жизнеспособную клетку из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.) пересадкой ядер, слиянием протопластов (т. е. всего содержимого клетки без ядра и клеточной стенки) клеток разных видов.

Клеточная инженерия позволяет соединять в одной клетке наследственные материалы очень далеких видов, даже принадлежащих к разным царствам.

Использование живых клеток и биологических процессов для получения веществ, необходимых человеку, называют биотехнологией (от греч. bios – «жизнь», techne – «мастерство» и logos – «учение»).

Биотехнология — дисциплина, изучающая возможности использования живых организмов или продуктов их жизнедеятельности для решения технологических задач.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии (цитологии), а также прикладных дисциплинах — химической и информационной технологиях и робототехнике.

В начале XX века начала активно развиваться бродильная и микробиологическая промышленность. Позже были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей и др.

Сегодня множество пищевых продуктов и лекарственных препаратов изготавливаются с использованием биотехнологического производства.

Генная и клеточная инженерия – это два направления биотехнологии. Они имеют важное практическое значение в микробиологической промышленности для синтеза биологически активных веществ, нужных человеку.

Селекция микроорганизмов имеет важное значение для решения многих проблем микробиологической промышленности, а также для медицины, производства лекарств, сельскохозяйственной индустрии, для разработки методов и средств очистки окружающей среды от загрязнений.

< Предыдущая страница «Особенности селекции животных»

Следующая страница «Биосфера и её структура» >

Лекция № 25. Селекция микроорганизмов. Биотехнология

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия

Генная инженерия — совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными, бактерии и грибы — трансформированными. Традиционным объектом генной инженерии является кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста — соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Процесс создания трансформированных бактерий включает в себя следующие этапы.

  1. Рестрикция — «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов — рестриктаз.
  2. Создание вектора — специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды. Ген вшивают в плазмиду с помощью другой группы ферментов — лигаз. Вектор должен содержать все необходимое для управления работой этого гена — промотор, терминатор, ген-оператор и ген-регулятор, а также маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток.
  3. Трансформация — внедрение вектора в бактерию.
  4. Скрининг — отбор тех бактерий, в которых внедренные гены успешно работают.
  5. Клонирование трансформированных бактерий.

Образование рекомбинантных плазмид:
1 — клетка с исходной плазмидой; 2 — выделенная плазмида; 3 — создание вектора; 4 — рекомбинантная плазмида (вектор); 5 — клетка с рекомбинантной плазмидой.

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

Хромосомная инженерия

Хромосомная инженерия — совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии), или замещении одной пары гомологичных хромосом на другую (замещенные линии). В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2–3 года вместо 6–8-летнего инбридинга.

Сюда же можно отнести и метод получения полиплоидных растений (см. Лекция 23 «Селекция растений»).

Клеточная инженерия

Клеточная инженерия — конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции.

Клетки растений и животных, помещенные в питательные среды, содержащие все необходимые для жизнедеятельности вещества, способны делиться, образуя клеточные культуры. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Следовательно, можно размножать растения в пробирках, помещая клетки в определенные питательные среды. Это особенно актуально в отношении редких или ценных растений.

С помощью клеточных культур можно получать ценные биологически активные вещества (культура клеток женьшеня). Получение и изучение гибридных клеток позволяет решить многие вопросы теоретической биологии (механизмы клеточной дифференцировки, клеточного размножения и др.). Клетки, полученные в результате слияния протопластов соматических клеток, относящихся к разным видам (картофеля и томата, яблони и вишни и др.), являются основой для создания новых форм растений. В биотехнологии для получения моноклональных антител используются гибридомы — гибрид лимфоцитов с раковыми клетками. Гибридомы нарабатывают антитела, как лимфоциты, и обладают возможностью неограниченного размножения в культуре, как раковые клетки.

Метод пересадки ядер соматических клеток в яйцеклетки позволяет получить генетическую копию животного, то есть делает возможным клонирование животных. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Метод слияния эмбрионов на ранних стадиях делает возможным создание химерных животных. Таким способом были получены химерные мыши (слияние эмбрионов белых и черных мышей), химерное животное овца-коза.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *