Светопроводящий аппарат глаза

III. Световоспринимающая и светопроводящая части глаза. Оптическая сила глаза. Аккомодация.

Глаз — воспринимающий отдел зрительного анализатора, служащий для восприятия световых раздражений. Через глаза человек получает до 90 % информации об окружающем мире.

1. Склера- достаточно прочная внешняя белковая оболочка, защищающая глаз от повреждений и придающая ему постоянную форму.

2. Роговица- передняя часть склеры, более выпуклая и прозрачная; действующая как собирающая линза с оптической силой +(42-43) дптр. Склера обеспечивает до 75 % фокусирующей способности глаза. Ее толщина 0,6-1 мм, а показатель преломления

n = 1,38.

3. Конъюнктива- наружная оболочка глаза, выполняет барьерную и защитную роль.

4. Сосудистая оболочка — с внутренней стороны склера выстлана сосудистой оболочкой. Это очень тонкая перепонка, содержащая кровеносные сосуды. В передней части она утолщается и принимает форму кольца. Здесь-то и прикрепляется радужная оболочка и ресничная мышца.

Пигментная оболочка, содержащая темные пигментные клетки, препятствующие рассеиванию света в глазу.

5. Радужная оболочка — в передней части сосудистая оболочка переходит в окрашенную радужную оболочку, цвет которой определяет цвет глаз.

6. Зрачок — круглое отверстие в радужной оболочке, пропускающее свет. Диаметр зрачка может изменяться от 2 до 8 мм. Радужная оболочка и зрачок играют роль диафрагмы, регулирующей поступление света внутрь глаза.

7. Хрусталик- природная эластичная двояковыпуклая линза диаметром 8-10 мм и оптической силой +(20-30) дптр. Хрусталик имеет слоистую структуру с наибольшим показателем преломления n = 1,41; находится за радужной оболочкой.

8.Передняя камера — камера с водянистой массой (n = пводы), которая находится в передней части глаза между роговицей и хрусталиком, оптическая сила +(2-4) дптр.

9.Стекловидное тело- студенистое вещество, заполняющее пространство между хрусталиком и сетчаткой (задняя глазная камера). Оптическая сила -(5-6) дптр.

10. Зрительный нерв, обеспечивающий передачу зрительной информации в мозг. Подходя к глазу, он разветвляется, образуя на задней стенке сосудистой оболочки светочувствительный слой — сетчатку.

11. Сетчатка- светочувствительный слой, воспринимающий свет и преобразующий его в нервные импульсы. Сетчатка представляет собой разветвление зрительного нерва с нервными окончаниями в виде палочек и колбочек. Колбочки (их примерно 10 млн) служат для восприятия мелких деталей предмета и различения цветов; диаметр колбочки 7 мкм, а длина около 35 мкм.

Палочки (120 млн клеток) не воспринимают различия в цвете и мелкие детали, но они высокочувствительны к слабому свету (отвечают за сумеречное зрение). С помощью палочек человек различает предметы в сумерках и ночью. Диаметр палочки 2 мкм, а длина 6 мкм.

Палочки и колбочки распределены неравномерно: в средней части сетчатки преобладают колбочки, а по краям — палочки. Чувствительность сетчатки очень высока: свет обыкновенной свечи виден на расстоянии нескольких километров.

12. Слепое пятно — расположено в том месте, где зрительный нерв входит в глаз. Здесь нет ни палочек, ни колбочек, и лучи, попадающие на эту область, не вызывают световых ощущений (отсюда и название «слепое пятно»).

13. Желтое пятно (макула)- самая чувствительная область сетчатки, площадью около 3 мм2. Человек видит ясно те предметы, изображение которых проецируется на желтое пятно. Центральная ямка — наиболее чувствительная часть желтого пятна. Это область диаметром примерно полмиллиметра, в которой сетчатка углублена. Здесь палочки совсем отсутствуют, а концентрация колбочек максимальна (наилучшее зрение).

14. Реснитчатое тело – место соединения склеры и роговицы, предназначено для аккомодации глаза, поддерживает, фиксирует и растягивает хрусталик. При сокращении реснитчатой мышцы выпуклость хрусталика увеличивается и происходит аккомодация на близлежащие предметы (и наоборот).

15. Кольцевая мышца- мышца, которая охватывает хрусталик и может изменять кривизну его поверхностей. При сжатии кольцевой мышцы оптическая сила хрусталика увеличивается.

Т.о., глаз включает:

1.Светопроводящий аппарат — образован роговицей, жидкостью передней камеры, хрусталиком и стекловидным телом. Глаз — центрированная оптическая система, главная оптическая ось (ОО) которой проходит через центры роговицы, зрачка, хрусталика.

2.Световоспринимающий (рецепторный) аппарат — сетчатка, в которой находятся светочувствительные зрительные клетки (палочки и колбочки).

3.Опорно-механический аппарат- склера, капсула хрусталика и его связка, стекловидное тело.

4. Светорегулирующий аппарат – радужка, реснитчатое тело.

Оптическая сила глазаскладывается из оптических сил роговицы, жидкости передней камеры, хрусталика и стекловидного телаи вычисляется как обратное фокусное расстояние:

где — заднее фокусное расстояние глаза, выраженное в метрах.

При полностью расслабленной кольцевой мышце оптическая сила глаза — около +60 дптр, при максимальном напряжении кольцевой мышцы (рассматривании близких предметов) D > +70 дптр.

Аккомодация(comodus — удобный) — это свойство глаза четко видеть предметы, находящиеся на различных расстояниях от глаза.

В основе аккомодации лежит способность хрусталика менять свою кривизну под действием импульсов, посылаемых из центральной нервной системы в ресничную мышцу.

Её основные характеристики:

1. Ближняя точка ясного видения (punctumproximum) (Рр) — это

точка, соответствующая min расстоянию, на котором напряженный глаз четко различает предмет. Зависит от свойств аппарата аккомодации, от эластичности хрусталика, и с возрастом – отдаляется. В молодом возрасте она находится на r = 7-10 см от глаза.

2. Дальняя точка ясного видения (punctumremootum) (Рr) – это точка, соответствующая максимальному расстоянию ясного видения без напряжения глаза. У нормального глаза эта точка находится в условной бесконечности. Её положение определяется анатомическими способностями глаза.


Диапазон или объем аккомодации (L, Д, Да ) – это расстояние между Рr и Рр или разность оптических сил глаза при установлении на дальнюю и ближнюю точки ясного видения.

Количественно:

1. Да= Д = Дрr – Дрр

2. L= Lpr — Lрp

Да — диапазон аккомодации (в диоптриях дптр)

Дптр- диоптрий, единица оптической силы линз и оптических систем:

1 дптр- преломляющая сила линзы с фокусным расстоянием в 1метр.

Lрр — расстояние от вершины роговицы до ближней точки (в «м»).

Lрr — расстояние от вершины роговицы до дальней точки (в «м»).

В возрасте ≈ 20 лет диапазон аккомодации равен 10 дптр., в 40 лет – 2,5 дптр., к 60 годам равен – 1-0,5 дптр.

Светопроводящий аппарат глаза включает в себя

а) роговицы, жидкость передней камеры, хрусталик, стекловидное тело

б) склеру, хрусталик, жидкость передней камеры, колбочки

в) зрачок, хрусталик, жидкость передней камеры, колбочки

г) зрительные клетки – колбочконесущие и палочконесущие

д) роговицу, хрусталик и светочувствительные (зрительные) клетки

Световоспринимающий аппарат глаза включает в себя

а) склеру и сетчатку

б) роговицу, хрусталик и сетчатку

в) зрительный нерв

г) сетчатку

Близорукость – недостаток глаза, состоящий в том, что

а) фокусное расстояние при отсутствии аккомодации больше нормы

б) задний фокус при отсутствии аккомодации лежит за сетчаткой

в) задний фокус лежит впереди сетчатки

г) переднее и заднее фокусные расстояния глаза равны

д) задний фокус при отсутствии аккомодации лежит впереди сетчатки

Дальнозоркость – недостаток глаза, состоящий в том, что

а) фокусное расстояние при отсутствии аккомодации больше нормы

б) задний фокус при отсутствии аккомодации лежит за сетчаткой

в) задний фокус лежит впереди сетчатки

г) переднее и заднее фокусные расстояния глаза равны

д) задний фокус при отсутствии аккомодации лежит впереди

Для коррекции дальнозоркости применяют

а) рассеивающие линзы

б) двояковогнутые линзы

в) собирающие линзы

г) цилиндрические линзы

Для коррекции близорукости применяют

а) рассеивающие линзы

б) двояковыпуклые литы

в) собирающие линзы

г) цилиндрические линзы

Основными параметрами, обуславливающими разрешающую способность микроскопа, являются

а) числовая апертура, длина волны

б) фокусное расстояние объектива, длина волны

в) угол зрения, длина волны

г) расстояние наилучшего зрения, длина волны

Какое явление ограничивает полезное увеличение микроскопа

а) поляризация света

б) интерференция света

в) дифракция света

г) люминесценция

Для того чтобы вычислить полезное увеличение микроскопа, необходимо знать следующие величины

а) линейное увеличение объектива и угловое увеличение окуляра

б) предел разрешения микроскопа и предел разрешения глаза

в) числовую апертуру объектива и фокусное расстояние окуляра

г) все перечисленные величины

В медицине разрешающую способность глаза оценивают

а) наименьшим углом зрения

б) углом зрения

в) остротой зрения

г) наименьшим расстоянием между двумя точками предмета, которые воспринимаются глазом отдельно


д) расстоянием между двумя соседними зрительными клетками сетчатки

Аккомодацией называют

а) приспособление глаза к видению в темноте

б) приспособление глаза к четкому видению различно удаленных предметов

в) приспособление глаза к восприятию различных оттенков одного цвета

г) величину, обратную пороговой яркости

Рентгеновское излучение-это

а) поток электронов

б) поток протонов

в) поток нейтронов

г) все выше перечисленные частицы

д) электромагнитная волна с частотой порядка Гц

е) электромагнитная волна с частотой порядка Гц

Светопреломляющий аппарат глаза

Светопреломляющий (диоптрический) аппарат глаза включает роговицу, хрусталик, стекловидное тело, жидкости передней и задней камер глаза.

Роговица (cornea) занимает 1/16 площади фиброзной оболочки глаза и, выполняя защитную функцию, отличается высокой оптической гомогенностью, пропускает и преломляет световые лучи и является составной частью светопреломляющего аппарата глаза. Пластинки коллагеновых фибрилл, из которых состоит основная часть роговицы, имеют правильное расположение, одинаковый показатель преломления с нервными ветвями и межуточной субстанцией, что вместе с химическим составом определяет ее прозрачность.

Толщина роговицы 0,8—0,9 мкм в центре и 1,1 мкм на периферии, радиус кривизны 7,8 мкм, показатель преломления — 1,37, сила преломления 40 дптр.

В роговице микроскопически выделяют 5 слоев: 1) передний многослойный плоский неороговевающий эпителий; 2) переднюю пограничную мембрану (боуменову оболочку); 3) собственное вещество роговицы; 4) заднюю пограничную эластическую мембрану (десцеметову оболочку); 5) задний эпителий («эндотелий»).

Клетки переднего эпителия роговицы плотно прилегают друг к другу, располагаются в 5 слоев, соединены десмосомами. Базальный слой расположен на боуменовой оболочке. В патологических условиях (при недостаточно прочной связи базального слоя и боуменовой оболочки) происходит отслойка от базального слоя боуменовой оболочки. Клетки базального слоя эпителия (герминативный, зародышевый слой) имеют призматическую форму и овальное ядро, расположенное близко к вершине клетки. К базальному слою примыкают 2—3 слоя многогранных клеток. Их вытянутые в стороны отростки внедряются между соседними клетками эпителия, подобно крыльям (крылатые, или шиповидные, клетки). Ядра крылатых клеток округлые. Два поверхностных эпителиальных слоя состоят из резко уплощенных клеток, не имеют признаков ороговения. Удлиненные узкие ядра клеток наружных слоев эпителия располагаются параллельно поверхности роговицы. В эпителии имеются многочисленные свободные нервные окончания, обусловливающие высокую тактильную чувствительность роговицы. Поверхность роговицы увлажнена секретом слезных и конъюнктивальных желез, который защищает глаз от вредных физико-химических воздействий внешнего мира, бактерий. Эпителий роговицы отличается высокой регенерационной способностью. Под эпителием роговицы расположена бесструктурная передняя пограничная мембрана (lamina limitans interna) — боуменова оболочка толщиной 6—9 мкм. Она представляет собой модифицированную гиалинизированную часть стромы, трудноотличима от последней и имеет тот же состав, что и собственное вещество роговицы. Граница между боуменовой оболочкой и эпителием хорошо выражена, а слияние боуменовой оболочки со стромой происходит незаметно.

Собственное вещество роговицы (substantia propria cornea) — строма — состоит из гомогенных тонких соединительнотканных пластинок, взаимопересекающихся под углом, но правильно чередующихся и расположенных параллельно поверхности роговицы. В пластинках и между ними располагаются отростчатые плоские клетки, являющиеся разновидностями фибробластов. Пластинки состоят из параллельно расположенных пучков коллагеновых фибрилл диаметром 0,3—0,6 мкм (по 1000 в каждой пластинке). Клетки и фибриллы погружены в аморфное вещество, богатое гликозаминогликанами (в основном кератинсульфатами), которое обеспечивает прозрачность собственного вещества роговицы. В области радужно-роговичного угла оно продолжается в непрозрачную наружную оболочку глаза — склеру. Собственное вещество роговицы не имеет кровеносных сосудов.

Задняя пограничная пластинка (lamina limitans posterior) — десцеметова оболочка — толщиной 5—10 мкм, представлена коллагеновыми волокнами диаметром 10 нм, погруженными в аморфное вещество. Это стекловидная, сильно преломляющая свет мембрана. Она состоит из 2 слоев: наружного — эластического, внутреннего — кутикулярного и является производным клеток заднего эпителия («эндотелия»). Характерными особенностями десцеметовой оболочки являются прочность, резистентность к химическим агентам и расплавляющему действию гнойного экссудата при язвах роговицы.

При гибели передних слоев десметова оболочка выпячивается в виде прозрачного пузырька (десцеметоцеле). На периферии она утолщается, и у людей пожилого возраста на этом месте могут формироваться округлые бородавчатые образования — тельца Гассаля—Генле.

У лимба десцеметова оболочка, истончаясь и разволокняясь, переходит в трабекулы склеры.

«Эндотелий роговицы», или задний эпителий (epithelium posterius), состоит из одного слоя плоских полигональных клеток. Он защищает строму роговицы от воздействия влаги передней камеры. Ядра клеток «эндотелия» округлые или слегка овальные, их ось располагается параллельно поверхности роговицы. Клетки «эндотелия» нередко содержат вакуоли. На периферии «эндотелий» переходит непосредственно на волокна трабекулярной сети, образуя наружный покров каждого трабекулярного волокна, вытягиваясь в длину.

В регуляции водного обмена играют роль боуменова и десцеметова оболочки, а процессы обмена в роговице обеспечиваются диффузией питательных веществ из передней камеры глаза за счет краевой петлистой сети роговицы, многочисленными концевыми капиллярными ветвями, образующими густое перилимбальное сплетение.

Лимфатическая система роговицы формируется из узких лимфатических щелей, сообщающихся с ресничным венозным сплетением. Роговица отличается высокой чувствительностью, что объясняется наличием в ней нервных окончаний.

Длинные цилиарные нервы, представляя ветви назоцилиарного нерва, отходящего от первой ветви тройничного нерва, на периферии роговицы проникают в ее толщу, теряют миелин на некотором расстоянии от лимба, делясь дихотомически. Нервные ветви образуют следующие сплетения: в собственном веществе роговицы, претерминальное и под боуменовой оболочкой — терминальное, суббазальное (сплетение Райзера).

При воспалительных процессах кровеносные капилляры и клетки (лейкоциты, макрофаги и др.) проникают из области лимба в собственное вещество роговицы, что приводит к ее помутнению и ороговению, образованию бельма.

Передняя камера глаза образована роговицей (наружная стенка) и радужной оболочкой (задняя стенка), в области зрачка — передней капсулой хрусталика. На крайней ее периферии в углу передней камеры имеется камерный, или радужно-роговичный, угол (spatia anguli iridocornealis) с небольшим участком цилиарного тела. Камерный (еще называемый фильтрационный) угол граничит с дренажным аппаратом — шлеммовым каналом. Состояние камерного угла играет большую роль в обмене внутриглазной жидкости и в изменении внутриглазного давления. Соответственно вершине угла в склере проходит кольцевидно располагающийся желобок (sulcus sclerae interims). Задний край желобка несколько утолщен и образует склеральный валик, сформированный за счет круговых волокон склеры (заднее пограничное кольцо Швальбе). Склеральный валик служит местом прикрепления поддерживающей связки цилиарного тела и радужной оболочки — трабекулярного аппарата, заполняющего переднюю часть склерального желобка. В задней части он прикрывает шлеммов канал.

Трабекулярный аппарат, ранее ошибочно называвшийся гребенчатой связкой, состоит из 2 частей: склерокорнеальной (lig. sclerocorneale), занимающей большую часть трабекулярного аппарата, и второй, более нежной, — увеальной части, которая расположена с внутренней стороны и является собственно гребенчатой связкой (lig. pectinatum). Склерокорнеальный отдел трабекулярного аппарата прикрепляется к склеральной шпоре, частично сливается с цилиарной мышцей (мышца Брюкке). Склерокорнеальная часть трабекулярного аппарата состоит из сети переплетающихся трабекул, имеющих сложную структуру. В центре каждой трабекулы, представляющей плоский тонкий тяж, проходит коллагеновое волокно, обвитое, укрепленное эластическими волокнами и покрытое снаружи футляром из гомогенной стекловидной оболочки, являющейся продолжением десцеметовой оболочки. Между сложным переплетом корнеосклеральных волокон остаются многочисленные свободные щелевидные отверстия — фонтановы пространства, выстланные «эндотелием», переходящим с задней поверхности роговицы. Фонтановы пространства направлены к стенке венозного синуса склеры (sinus venosus sclerae) — шлеммова канала, расположенного в нижнем отделе склерального желобка шириной 0,25 см. В некоторых местах он разделяется на ряд канальцев, далее сливающихся в один ствол. Внутри шлеммов канал выстлан эндотелием. С его наружной стороны отходят широкие, иногда варикозно-расширенные сосуды, образующие сложную сеть анастомозов, от которых берут начало вены, отводящие камерную влагу в глубокое склеральное венозное сплетение.

Хрусталик (lens). Это прозрачная двояковыпуклая линза, форма которой меняется во время аккомодации глаза к видению близких или отдаленных объектов. Вместе с роговицей и стекловидным телом хрусталик составляет основную светопреломляющую среду. Радиус кривизны хрусталика варьирует от 6 до 10 мм, показатель преломления составляет 1,42. Хрусталик покрыт прозрачной капсулой толщиной 11—18 мкм. Его передняя стенка состоит из однослойного плоского эпителия хрусталика (epithelium lentis).

По направлению к экватору эпителиоциты становятся выше и образуют ростковую зону хрусталика. Эта зона «поставляет» в течение всей жизни новые клетки как на переднюю, так и на заднюю поверхность хрусталика. Новые эпителиоциты преобразуются в так называемые хрусталиковые волокна (fibrae lentis). Каждое волокно представляет собой прозрачную шестиугольную призму. В цитоплазме хрусталиковых волокон находится прозрачный белок — кристаллин. Волокна склеиваются друг с другом особым веществом, которое имеет такой же, как и они, коэффициент преломления. Центрально расположенные волокна теряют свои ядра, и, накладываясь друг на друга, образуют ядро хрусталика.

Хрусталик поддерживается в глазу с помощью волокон ресничного пояска (zonula ciliaris), образованного радиально расположенными пучками нерастяжимых волокон, прикрепленных с одной стороны к цилиарному телу, а с другой — к капсуле хрусталика, благодаря чему сокращение мышц цилиарного тела передается хрусталику. Знание закономерностей строения и гистофизиологии хрусталика позволило разработать методы создания искусственных хрусталиков и широко внедрить в клиническую практику их пересадку, что сделало возможным лечение больных с помутнением хрусталика (катаракта).

Стекловидное тело (corpus vitreum). Это прозрачная желеобразная масса, заполняющая полость между хрусталиком и сетчаткой. На фиксированных препаратах стекловидное тело имеет сетчатое строение. На периферии оно более плотное, чем в центре. Через стекловидное тело проходит канал — остаток эмбриональной сосудистой системы глаза — от сосочка сетчатки до задней поверхности хрусталика. Стекловидное тело содержит белок витреин и гиалуроновую кислоту. Показатель преломления стекловидного тела равен 1,33.

Светопреломляющий аппарат глаза.

Светопреломляющий (диоптрический) аппарат глаза включает рогови­цу, хрусталик, стекловидное тело, жидкости передней и задней камер глаза.

Роговица(cornea) занимает ‘/16 площади фиброзной оболочки глаза и, выполняя защитную функцию, отличается высокой оптической гомогенностью, пропускает и преломляет световые лучи и является составной частью светопреломляющего аппарата глаза. Пластинки коллагеновых фибрилл, из которых состоит основная часть роговицы, имеют правильное расположе­ние, одинаковый показатель преломления с нервными ветвями и межуточ­ной субстанцией, что вместе с химическим составом определяет ее прозрач­ность.

Толщина роговицы 0,8-0,9 мкм в центре и 1,1 мкм на периферии, радиус кривизны 7,8 мкм, показатель преломления — 1,37, сила преломления 40 дптр.

В роговице микроскопически выделяют 5 слоев: 1) передний много­слойный плоский неороговевающий эпителий; 2) переднюю пограничную мембрану (боуменову оболочку); 3) собственное вещество роговицы; 4) зад­нюю пограничную эластическую мембрану (десцеметову оболочку); 5) зад­ний эпителий («эндотелий»).

Клетки переднего эпителия роговицы плотно прилегают друг к другу, располагаются в 5 слоев, соединены десмосомами. Назаль­ный слой расположен на боуменовой оболочке. В патологических условиях (при недостаточно прочной связи базального слоя и боуменовой оболоч­ки) происходит отслойка от базального слоя боуменовой оболочки. Клетки базального слоя эпителия (герминативный, зародышевый слой) имеют призматическую форму и овальное ядро, расположенное близко к вершине клетки. К базальному слою примыкают 2-3 слоя многогранных клеток. Их вытянутые в стороны отростки внедряются между соседними клетками эпителия, подобно крыльям (крылатые, или шиловидные, клетки). Ядра крылатых клеток округлые. Два поверхностных эпителиальных слоя состоят из резко уплощенных клеток, не имеют признаков ороговения. Удлиненные узкие ядра клеток наружных слоев эпителия располагаются параллельно поверхности роговицы. В эпителии имеются многочисленные свободные нервные окончания, обусловливающие высокую тактильную чувствительность роговицы. Поверхность роговицы увлажнена секретом слезных и конъюнктивальных желез, который защищает глаз от вредных физико-химичес­ких воздействий внешнего мира, бактерий. Эпителий роговицы отличается высокой регенерационной способностью. Под эпителием роговицы распо­ложена бесструктурная передняя пограничная мембрана (lamina limitans interna) — боуменова оболочка толщиной 6-9 мкм. Она представляет собой модифицированную гиалинизированную часть стромы, трудноотличима от последней и имеет тот же состав, что и собственное вещество роговицы. Граница между боуменовой оболочкой и эпителием хорошо выражена, сли­яние боуменовой оболочки со стромой происходит незаметно.

Собственное вещество роговицы (substantia propria cornea) — строма — состоит из гомогенных тонких соединительнотканных пластинок, взаимопересекающихся под углом, но правильно чередующихся и расположенных параллельно поверхности роговицы. В пластинках и между ними располага­ются отростчатые плоские клетки, являющиеся разновидностями фибробластов. Пластинки состоят из параллельно расположенных пучков коллагеновых фибрилл диаметром 0,3-0,6 мкм (по 1000 в каждой пластинке). Клет­ки и фибриллы погружены в аморфное вещество, богатое гликозаминогликанами (в основном кератинсульфатами), которое обеспечивает прозрач­ность собственного вещества роговицы. В области радужнороговичного угла оно продолжается в непрозрачную наружную оболочку глаза — склеру. Соб­ственное вещество роговицы не имеет кровеносных сосудов.

Задняя пограничная пластинка (lamina limitans posterior) — десцеметова оболочка — толщиной 5-10 мкм, представлена коллагеновыми волокнами диаметром 10 нм, погруженными в аморфное вещество. Это стекловидная, сильно преломляющая свет мембрана. Она состоит из 2 слоев: наружного — эластического, внутреннего — кутикулярного и является производным клеток заднего эпителия («эндотелия»). Характерными особенностями десцеметовой оболочки являются прочность, резистентность к химическим агентам и расплавляющему действию гнойного экссудата при язвах роговицы.

При гибели передних слоев десметова оболочка выпячивается в виде прозрачного пузырька (десцеметоцеле). На периферии она утолщается, и у людей пожилого возраста на этом месте могут формироваться округлые бородавчатые образования — тельца Гассаля-Генле.

У лимба десцеметова оболочка, истончаясь и разволокняясь, переходит в трабекулы склеры.

«Эндотелий», или задний эпителий (epithelium posterius), состоит из од­ного слоя плоских полигональных низких призматических клеток. Он защи­щает строму роговицы от воздействия влаги передней камеры. Ядра клеток «эндотелия» округлые или слегка овальные, их ось располагается параллельно поверхности роговицы. Клетки «эндотелия» нередко содержат вакуоли. На периферии «эндотелий» переходит непосредственно на волокна трабекулярной сети, образуя наружный покров каждого трабекулярного волокна, вы­тягиваясь в длину.

В регуляции водного обмена играют роль боуменова и десцеметова оболочки, а процессы обмена в роговице обеспечиваются диффузией питательных веществ из передней камеры глаза за счет краевой петлистой сети роговицы, многочисленными концевыми капиллярными ветвями, образующими густое перилимбальное сплетение.

Лимфатическая система роговицы формируется из узких лимфатических щелей, сообщающихся с ресничным венозным сплетением. Роговица отличается высокой чувствительностью, что объясняется наличием в ней нервных окончаний.

Длинные цилиарные нервы представляя ветви назоцилиарного нерва, отходящего от первой ветви тройничного нерва, на периферии роговицы проникают в ее толщу, теряют миелин на некотором расстоянии от лимба, делясь дихотомически. Нервные ветви образуют следующие сплетения: в собственном веществе роговицы, претерминальное и под боуменовой оболочкой — терминальное, суббазальное (сплетение Райзера).

При воспалительных процессах кровеносные капилляры и клетки (лейкоциты, макрофаги и др.) проникают из области лимба в собственное вещество роговицы, что приводит к ее помутнению и ороговению, образованию бельма.

Передняя камера образована роговицей (наружная стенка) и радужной оболочкой (задняя стенка), в области зрачка — передней капсулой хруста­лика. На крайней ее периферии в углу передней камеры имеется камерный, ли радужно-роговичный, угол (spatia anguli iridocornealis) с небольшим участком цилиарного тела. Камерный (так называемый фильтрационный) угол граничит с дренажным аппаратом — шлеммовым каналом. Состояние камерного угла играет большую роль в обмене внутриглазной жидкости и в изменении внутриглазного давления. Соответственно вершине угла в склере проходит кольцевидно располагающийся желобок (sulcus sclerae internus). Задний край желобка несколько утолщен и образует склеральный валик, сформированный за счет круговых волокон склеры (заднее пограничное кольцо Швальбе). Склеральный валик служит местом прикрепления поддерживающей связки цилиарного тела и радужной оболочки трабекулярного аппарата, заполняющего переднюю часть склерального желобка. В задней части он прикрывает шлеммов канал.

Трабекулярный аппарат, ранее ошибочно называвшийся гребенчатой связкой, состоит из 2 частей: склерокорнеальной (lig. sclerocorneale), зани­мающей большую часть трабекулярного аппарата, и второй, более не­жной, увеальной части, которая расположена с внутренней стороны и является собственно гребенчатой связкой (lig. pectinatum). Склерокорнеальный отдел трабекулярного аппарата прикрепляется к склеральной шпоре, частично сливается с цилиарной мышцей (мышца Брюкке). Склерокорнеальная часть трабекулярного аппарата состоит из сети переплетающихся трабекул, имеющих сложную структуру. В центре каждой трабекулы, пред­ставляющей плоский тонкий тяж, проходит коллагеновое волокно, обви­тое, укрепленное эластическими волокнами и покрытое снаружи футляром из гомогенной стекловидной оболочки, являющейся продолжением десцеметовой оболочки. Между сложным переплетом корнеосклеральных волокон остаются многочисленные свободные щелевидные отверстия — фонтановы пространства, выстланные «эндотелием», переходящим с задней поверхности роговицы. Фонтановы пространства направлены к стенке венозного синуса склеры (sinus venosus sclerae) — шлеммова канала, расположенного в нижнем отделе склерального желобка шириной 0,25 см.

В некоторых местах он разделяется на ряд канальцев, далее сливающихся в один ствол. Внутри шлеммов канал выстлан эндотелием. С его наружной стороны отходят ши­рокие, иногда варикознорасширенные сосуды, образующие сложную сеть анастомозов, от которых берут начало вены, отводящие камерную влагу в глубокое склеральное венозное сплетение.

Хрусталик (lens). Это прозрачное двояковыпуклое тело, форма которого меняется во время аккомодации глаза к видению близких и отдаленных объектов. Вместе с роговицей и стекловидным телом хрусталик составляет основную светопреломляющую среду. Радиус кривизны хрусталика варьирует от 6 до 10 мм, показатель преломления составляет 1,42. Хрусталик покрыт прозрачной капсулой толщиной 11-18 мкм. Его передняя стенка, прилежащая к капсуле, состоит из однослойного плоского эпителия хрус­талика (epithelium lentis).

По направлению к экватору эпителиоциты становятся выше и образу­ют ростковую зону хрусталика. Эта зона «поставляет» в течение всей жизни новые клетки как на переднюю, так и на заднюю поверхность хрусталика. Новые эпителиоциты преобразуются в так называемые хрусталиковые волокна (fibrae lentis). Каждое волокно представляет собой прозрач­ную шестиугольную призму. В цитоплазме хрусталиковых волокон находит­ся прозрачный белок — кристаллин. Волокна склеиваются друг с другом особым веществом, которое имеет такой же, как и они, коэффициент пре­ломления. Центрально расположенные волокна теряют свои ядра, укорачи­ваются и, накладываясь друг на друга, образуют ядро хрусталика.

Хрусталик поддерживается в глазу с помощью волокон ресничного пояс­ка (zonula ciliaris), образованного радиально расположенными пучками нерастяжимых волокон, прикрепленных с одной стороны к цилиарному телу, а с другой — к капсуле хрусталика, благодаря чему сокращение мышц цилиарного тела передается хрусталику. Знание закономерностей строения и гистофизиологии хрусталика позволило разработать методы создания искусственных хрусталиков и широко внедрить в клиническую практику их пере­садку, что сделало возможным лечение больных с помутнением хрусталика (катаракта).

Стекловидное тело (corpus vitreum). Это прозрачная масса желеобразного вещества, заполняющего полость между хрусталиком и сетчаткой. На фиксированных препаратах стекловидное тело имеет сетчатое строение. На пе­риферии оно более плотное, чем в центре. Через стекловидное тело проходит канал — остаток эмбриональной сосудистой системы глаза — от сосоч­ка сетчатки до задней поверхности хрусталика. Стекловидное тело содержит белок витреин и гиалуроновую кислоту. Показатель преломления стекловид­ного тела равен 1,33. Сосудистый слой (stratfim vasculosum) состоит из многочисленных сосу­дов, пространство между которыми заполнено рыхлой волокнистой соединительной тканью с пигментными клетками.

Внутренний пограничный слой (stratum unternum limitans) не отлича­ется по строению от наружного слоя.

Задний пигментный эпителий (epithelium posterius pigmentosum) яв­ляется продолжением двухслойного эпителия сетчатки, покрывающего цилиарное тело и отростки.

Радужка осуществляет свою функцию в качестве диафрагмы глаза с помощью двух мышц: суживающей (musculus sphincter pupfflae) и расши­ряющей (musculus dilatator pupfflae) зрачок.

Ресничное тело(corpus ciliare). Ресничное тело является производным сосудистой и сетчатой оболочек. Выполняет функцию фиксации хрусталика и изменения его кривизны, тем самым участвуя в акте аккомодации. На меридиональных срезах через глаз цилиарное тело имеет вид треугольника, который своим основанием обращен в переднюю камеру глаза. Цилиарное тело подразделяется на две части: внутреннюю — цилиарную корону (corona ciliaris) и наружную — цилиарное кольцо (orbiculus ciliaris). От поверхности цилиарной короны отходят по направлению к хрусталику цилиарные отростки (processus ciliares), к которым прикрепляются волокна ресничного пояска. Основная часть цилиарного тела, за исключением отрос­тков, образована ресничной, или цилиарной, мышцей (m. ciliaris), играющей важную роль в аккомодации глаза. Она состоит из пучков гладких мышечных клеток, располагающихся в трех различных направлениях.

Различают наружные меридиональные мышечные пучки, лежащие непосредственно под склерой, средние радиальные и циркулярные мышечные пучки, обра­зующие кольцевой мышечный слой. Между мышечными пучками расположена рых­лая волокнистая соединительная ткань с пигментными клетками. Сокращение ци­лиарной мышцы приводит к расслаблению волокон круговой связки — ресничного пояска хрусталика, вследствие чего хрусталик становится выпуклым и его прелом­ляющая сила увеличивается. Цилиарное тело и цилиарные отростки покрыты цилиарной частью сетчатки. Последняя представлена слоем кубического интенсивно пигментированного эпите­лия. Эпителиальные клетки, покрывающие цилиарное тело и отростки, принимают участие в образовании водянистой влаги, заполняющей обе камеры глаза.

Сосудистая оболочка(choroidea) осуществляет питание пигментного эпителия и фоторецепторов, регулирует давление и температуру глазного яблока. Эта сосудистая ткань очень пигментирована (богата меланоцитами), толщина ее в заднем поле 0,22-0,3 мкм, а на периферии 0,1-0,15 мкм. В ней различают надсосудистую, сосудистую, сосудисто-капиллярную плас­тинки и базальный комплекс.

Надсосудистая пластинка (lamina suprachoroidea) толщиной 30 мкм представля­ет самый наружный слой сосудистой оболочки, прилежащий к склере. Она образо­вана рыхлой волокнистой соединительной тканью, содержит большое количество пигментных клеток (меланоцитов), коллагеновых фибрилл, фибробластов, нервных сплетений и сосудов. Тонкие (диаметром 2-3 мкм) коллагеновые волокна этой тка­ни направлены от склеры к хороидее, параллельно склере, имеют косое направле­ние в передней части, переходят в цилиарную мышцу.

Сосудистая пластинка (lamina vasculosa) состоит из переплетающихся артерий и вен, между которыми располагаются рыхлая волокнистая соединительная ткань, пигментные клетки, отдельные пучки гладких миоцитов. Сосуды хороидеи являются ветвями задних коротких цилиарных артерий (орбитальные ветви глазной артерии), которые проникают на уровне диска зрительного нерва в глазное яблоко, а также ветвями длинных цилиарных артерий (имеющих обратный ход от зубчатой линии к экватору) и от передних цилиарных артерий, дающих ветви в цилиарную мышцу и затем образующих капилляры. Между передней и задней цилиарными системами имеется множество анастомозов. В сосудистой пластинке выделяют слой крупных сосудов (венчик Галлера, сосудистое кольцо зрительного нерва) и слой средних сосудов, артериол, которые, анастомозируя между собой, образуют сплетение, и венул (слой Заттлера).

Сосудисто-капиллярная пластинка (lamina choroicapillaris) содержит гемокапил-ляры висцерального или синусоидного типа, отличающиеся неравномерным калиб­ром. Между капиллярами располагаются уплощенные фибробласты.

Базальный комплекс (complexus basalis) — мембрана Бруха (lamina vitrea, lamina elastica, membrana Brucha) — очень тонкая пластинка (1-4 мкм), располагающаяся между сосудистой оболочкой и пигментным слоем (эпители­ем) сетчатки. В ней различают наружный коллагеновый слой с зоной тон­ких эластических волокон, являющихся продолжением волокон сосудисто-капиллярной пластинки; внутренний коллагеновый слой, волокнистый (фиброзный), более широкий; третий слой представлен базальной мембра­ной пигментного эпителия — кутикулярный.

Светопреломляющий аппарат глаза. Аккомодация. Острота зрения. Близорукость, ее механизм и профилактика

⇐ ПредыдущаяСтр 20 из 52

Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три — основные:

  • склера — внешняя оболочка,
  • сосудистая оболочка — средняя,
  • сетчатка — внутренняя.

Рис. 1. Схематическое представление механизма аккомодации слева — фокусировка вдаль; справа — фокусировка на близкие предметы.

Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки — ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением — при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.1).

Зрачок представляет собой отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. У взрослого человека в спокойном состоянии диаметр зрачка при дневном свете равен 1,5 –2 мм, а в темноте увеличивается до7,5 мм. Основная физиологическая роль зрачка состоит в регулировании количества света, поступающего на сетчатку.

Сужение зрачка (миоз) происходит при увеличении освещённости (это ограничивает световой поток, попадающий на сетчатку, и, следовательно, служит защитным механизмом), при рассматривании близко расположенных предметов, когда происходит аккомодация и сведение зрительных осей (конвергенция), а также во сне.

Расширение зрачка (мидриаз) происходит при слабом освещении (что увеличивает освещённость сетчатки и тем самым повышает чувствительность глаза), а также при возбуждении рецепторов, любых афферентных нервов, при эмоциональных реакциях напряжения, связанных с повышением тонуса симпатической нервной системы, при психических возбуждениях, удушье, наркозе.

Величина зрачка регулируется кольцевыми и радиальными мышцами радужки. Радиальная мышца, расширяющая зрачок, иннервируется симпатическим нервом, идущим от верхнего шейного узла. Кольцевая мышца, суживающая зрачок, иннервируется парасимпатическими волокнами глазодвигательного нерва.

Реакция зрачков всегда содружественна, т.е. наступает одновременное суживание зрачка правого и левого глаза при освещении одного из них или расширение при затемнении.

Хрусталик в глазу «подвешен» на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим.

Приспособление глаза к ясному видению удалённых на разное расстояние предметов (т.е. свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза) называется аккомодацией. При аккомодации происходит изменение кривизны хрусталика за счёт сокращения ресничной мышцы. Она приближается к хрусталику, ослабевает натяжение цинновой связки, которая прикрепляется к его капсуле. Капсула расслабляется, и хрусталик, переставая испытывать её давление, становится более выпуклым. Это сопровождается увеличением преломляющей силы и перемещением точки схождения лучей, идущих от ближнего предмета, на сетчатку.

Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате — сетчатой оболочке. Сетчатка глаза — передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток — фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом «желтом пятне». Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. «Желтым пятном» человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.

От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно «обслуживает» целую группу палочек.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервноговозбуждения передается в другие слои сетчатки — на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных «помех» в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки — «слепом пятне». Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию — кору, где и происходит формирование зрительного образа (рис. 2).

Рис 2. Схема строения зрительного анализатора

1 — сетчатка, 2 — неперекрещенные волокна зрительного нерва, 3 — перекрещенные волокна зрительного нерва, 4 — зрительный тракт, 5 — наружнее коленчатое тело, 6 — латеральный корешок, 7 — зрительные доли.
Наименьшее расстояние от предмета до глаза, на котором этот предмет ещё ясно видим, называется ближней точкой ясного видения, а наибольшее расстояние – дальней точкой ясного видения. При расположении предмета в ближней точке аккомодация максимальна, в дальней – аккомодация отсутствует. Разность преломляющих сил глаза при максимальной аккомодации и при её покое называют силой аккомодации. За единицу оптической силы принимается оптическая сила линзы с фокусным расстоянием 1 метр. Эта единица называется диоптрией. Для определения оптической силы линзы в диоптриях следует единицу разделить на фокусное расстояние в метрах. Величина аккомодации неодинакова у разных людей и колеблется в зависимости от возраста от 0 до 14 диоптрий.

Для ясного видения предмета необходимо, чтобы лучи каждой его точки были сфокусированы на сетчатке. Если смотреть вдаль, то близкие предметы видны неясно, расплывчато, так как лучи от ближних точек фокусируются за сетчаткой. Видеть одновременно одинаково ясно предметы, удалённые от глаза на разное расстояние, невозможно.

Рефракция (пре­ломление лучей) отражает способность оптической сис­темы глаза фокусировать изображение предмета на сет­чатке глаза. К особенностям преломляющих свойств любого глаза относится явление сферической аберрации. Оно заключается в том, что лучи, проходящие через перифери­ческие участки хрусталика, преломляются сильнее, чем лучи, иду­щие через центральные его части (рис. 65). Поэтому центральные и периферические лучи сходятся не в одной точке. Однако эта особенность преломления не мешает ясному видению предмета, так как радужная оболочка не пропускает лучи и тем самым устра­няются те из них, которые проходят через периферию хрусталика. Неодинаковое преломление лучей разной длины волны называют хроматической аберрацией.

Преломляюшая сила оптической системы (рефракция), т. е. способность глаза преломлять, и измеряется в условных единицах — диоптриях. Диоптрия — это преломляющая сила линзы, в которой параллельные лучи после преломления собирают ся в фокусе на расстоянии1 м.

Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора»работают» гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза.Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость, дальнозоркость, возрастная дальнозоркость и астигматизм (рис. 3).

При нормальном зрении, которое называется эмметропическим, острота зрения, т.е. максимальная способность глаза различать отдельные детали объектов, обычно достигает одной условной единицы. Это означает, что че­ловек способен рассмотреть две отдельные точки, видимые под углом в 1 минуту.

При аномалии рефракции острота зрения всегда ниже 1. Различают три основных вида аномалии рефрак­ции — астигматизм, близорукость (миопию) и дальнозор­кость (гиперметропию)
(рис. 3).

При нормальном зрении, которое называется эмметропическим, острота зрения, т.е. максимальная способность глаза различать отдельные детали объектов, обычно достигает одной условной единицы. Это означает, что че­ловек способен рассмотреть две отдельные точки, видимые под углом в 1 минуту.

При аномалии рефракции острота зрения всегда ниже 1. Различают три основных вида аномалии рефрак­ции — астигматизм, близорукость (миопию) и дальнозор­кость (гиперметропию).

При нарушениях рефракции возникают близорукость или дальнозоркость. Рефракция глаза изменяется с возрастом: она меньше нормальной у новорождённых, в пожилом возрасте может снова уменьшаться (так называемая старческая дальнозоркость или пресбиопия).

Три варианта оптической системы глаза

Схема коррекции дальнозоркости

Схема коррекции близорукости

Астигматизм обусловлен тем, что в силу врожденных особенностей оптическая система глаза (роговица и хрус­талик) неодинаково преломляет лучи в разных направле­ниях (по горизонтальному или по вертикальному ме­ридиану). Иначе говоря, явление сферической аберрации у этих людей выражено значительно сильнее, чем обычно (и оно не компенсируется сужением зрачка). Так, если кривизна поверхности роговицы в вертикальном сечении больше, чем в горизонтальном, изображение на сетчатке не будет четким, независимо от расстояния до предмета.

Роговица будет иметь как бы два главных фокуса: один — для вертикального сечения, другой — для горизон­тального. Поэтому лучи света, проходящие через астиг­матический глаз, будут фокусироваться в разных плоско­стях: если горизонтальные линии предмета будут сфоку­сированы на сетчатке, то вертикальные — впереди нее. Ношение цилиндрических линз, подобранных с учетом реального дефекта оптической системы, в определенной степени компенсирует эту аномалию рефракции.

Близорукость и дально­зоркость обусловлены изменением длины глазного ябло­ка. При нормальной рефракции расстояние между рого­вицей и центральной ямкой (желтым пятном) составляет24,4 мм. При миопии (близорукости) продольная ось глаза больше24,4 мм, поэтому лучи от далекого объекта фокусируются не на сетчатке, а перед ней, в стекловид­ном теле. Чтобы ясно видеть вдаль, необходимо перед близорукими глазами поместить вогнутые стекла, кото­рые отодвинут сфокусированное изображение на сет­чатку. В дальнозорком глазу продольная ось глаза уко­рочена, т.е. меньше24,4 мм. Поэтому лучи от далекого объекта фокусируются не на сетчатке, а за ней. Этот недостаток рефракции может быть компенсирован акко­модационным усилием, т.е. увеличением выпуклости хру­сталика. Поэтому дальнозоркий человек напрягает акко­модационную мышцу, рассматривая не только близкие, но и далекие объекты. При рассматривании близких объектов аккомодационные усилия дальнозорких людей недостаточны. Поэтому для чтения дальнозоркие люди должны надевать очки с двояковыпуклыми линзами, уси­ливающими преломление света.

Аномалии рефракции, в частности близорукость и дальнозоркость распространены и среди животных, на­пример, у лошадей; близорукость весьма часто наблюда­ется у овец, особенно культурных пород

Ход световых лучей в глазу. Глаз можно рассматри­вать как оптический аппарат, подобный фотографическому. От каждой точки снимаемого объекта на линзу фотоаппарата падает расходящийся пучок лучей. Проходя через линзу, лучи преломля­ются и сходятся в соответствующей точке фотопластинки. То же происходит и в глазу, где, однако, ход лучей очень сложен. Чтобы достигнуть сетчатки, луч должен пройти через несколько преломля­ющих поверхностей — роговицу,’ водянистую влагу, хрусталик и,

наконец, стекловидное тело. Поэтому луч многократно меняет на­правление, и проследить за ним очень трудно. Для упро­щения была вычислена такая модель глаза, в которой одна выпуклая поверхность дает суммарный эффект преломления лучей по всей сложной оптической системе глаза. Пользуясь этой моделью и принимая во внимание, что лучи, падающие перпендикулярно к поверхности, не преломляются и пересекаются в центре кривиз­ны, можно легко построить изображений видимого предмета на сетчатке.: Для этого следует от отдельных точек предмета провести прямые линии, проходящие через центр кривизны и продолжен­ные до сетчатки. Нетрудно убедиться, что изображение на сетчатке действительное, уменьшенное и обратное. Лучи от правой стороны поя’я зрения .попадают на левую часть сетчатки, от ле вой — на правую, от верхней — на нижнюю, от нижней — на верх­нюю часть сетчатки.

Вопрос 33.

Цветовое зрение. Аккомодация глаза. Бинокулярное зрение.

Цветовое зрение. Все многообразие цветовых оттенков может быть получено путем смешения трех цветов спектра — красного, зеленого и фиолетового (или синего). Если быстро вращать диск, составленный из этих цветов, он будет казаться белым. Доказано, что цветоощущающий аппарат состоит из трех видов колбочек:

одни преимущественно чувствительны к красным лучам, другие — к зеленым, третьи — к» синим. От соотношения силы возбужде­ния каждого вида колбочек и зависит цветовое зрение.

Наблюдения за электрическими реакциями коры больших полу­шарий позволили установить, что мозг новорожденного реагирует

не только на свет, но и на цвет. Способность различать цвета была обнаружена у грудного ребенка методом условных рефлексов. Раз­личение цветов становится все более совершенным по мере образо­вания новых условных связей, приобретаемых в процессе игры

Бинокулярное зрение. У большинства животных каждый глаз имеет свое отдельное поле зрения. Человек значительную часть полей зрения обоих глаз видит одновременно и правым и ле­вым глазом, что значительно улучшает зрительную оценку расстоя­ний и позволяет видеть объемную форму предметов.

. При бинокулярном зрении оба глаза должны быть всегда точно установлены на один и тот же пункт поля зрения, чтобы изобра­жение каждой части видимого предмета занимало в обеих сетчат­ках совершенно одинаковое положение, иными словами, чтобы по­падало на их идентичные, т. е. тождественные, точки (рис. 53)^ Клетки зрительной области коры больших полушарий, к которым;

приходят импульсы от идентичных точек обеих, сетчаток, тесно свя­заны между собой. Их одновременное возбуждение позволяет чет­ко видеть предмет. Стоит слегка надавить сбоку глазное яблоко и тем самым несколько сместить его, как изображение раздваивает­ся, становится неясным. Это происходит потому, что изображение поп-адает на неидентичные точки обеих сетчаток.

Установка глаза на ту или иную точку поля зрения обеспечива­ется шестью мышцами, которые одним концом прикрепляются к глазнице, а другим — к определенным участкам поверхности глаз­ного яблока. Оно вращается в различном направлении в зависимо­сти от того, какие из этих мышц сокращаются.

У новорожденного движения обоих глаз часто бывают недоста­точно согласованны. Иногда движение одного глаза отстает от дви­жения другого, и ребенок косит глазами; мало того, один глаз мо­жет .даже остаться неподвижным. Наблюдая за ребенком, можно обнаружить, что его как бы безучастный взгляд по временам ожив­ляется. Это происходит в тот момент, когда оба глаза согласован­но фиксируют какой-то предмет и ребенок ясно его видит. Если предмет медленно передвигается, ребенок пытается следить за ним глазами, а при неудаче начинает вращать глаза во все сторонь;, проявляя беспокойство, которое проходит, как только взор снова упадет на предмет. Через несколько дней после рождения-движе­ния обоих глаз становятся хорошо согласованными. Однако во вре—.мя сна согласованность еще долгое время может нарушаться. ^^’уКосоглазие. Нарушения согласованного движения глазных яб­лок, а также дефекты оптической системы одного или двух глаз мо­гут привести к устойчивому косоглазию. Сначала оно бывает за­метным только при утомлении или сосредоточенном рассматрива­нии какого-либо предмета, а в дальнейшем усиливается и становит­ся’постоянным. Острота зрения косящего глаза резко снижается, ухудшается возможность правильно определять расстояние между предметами, их размеры, объем.

У детей косоглазие чаще всего появляется на 2—3-м году жиз< ни,, иногда становится заметным после какой-либо тяжелой болез»

ни или испуга. Очень важно своевременно выявить косоглазие и по­казать ребенка врачу, так как оно хорошо излечимо лишь в началь-;. ных стадиях. При возникновении косоглазия в одном глазу вся зри^’ тельная нагрузка переносится на здоровый глаз, а больной глаз, перестав упражняться, постепенно перестает функционировать и атрофируется. При косоглазии назначают очки, даже если ребенку 1—2 года. Выписанные очки дети должны носить постоянно, снимая их только при умывании и отходе ко сну.

Аккомодация глаза. Когда человек смотрит вдаль, предметы, / расположенные на близком расстоянии, кажутся расплывчатыми, они не в фокусе. И наоборот, при фиксировании глазом ближних предметов неясно видны отдаленные. Это объясняется тем, что пс мере приближения предмета схождение лучей отодвигается назад, а на сетчатке изображение становится расплывчатым — появляется круг рассеяния (рис. 46). Если увеличить кривизну преломляющей поверхности, т. е. уменьшить радиус кривизны, то лучи от более близких точек сойдутся на сетчатке, а от отдаленных — впереди сетчатки.

На всем протяжении ресничного тела, или кольцевого валика, на котором подвешен хрусталик, находится ресничная мышца. Она расслаблена при установке зрения на даль. Сокращаясь, мышца тянет край ресничного тела вперед и к середине. При этом кольцо, образованное ресничным телом, суживается, натяжение волокон, поддерживающих хрусталик, ослабевает, и он становится более выпуклым, что ведет к усилению преломления лучей (рис. 47). Чем сильнее сокращается ресничная мышца, тем больше увеличивается кривизна хрусталика (т. е. уменьшается радиус его кривизны). Со­ответственно уменьшается расстояние, на котором рассматрива­емый предмет ясно виден. Увеличение преломляющей силы глаза, позволяющее четко видеть предметы на малом расстоянии, называ­ется аккомодацией, т. е. приспособлением.

Пределы расстояния, на когором ясно виден предмет, неодина­ковы у разных людей. Глаз считается нормальным, если без акко­модации на сетчатке сходятся параллельные лучи, идущие от да­леко расположенного предмета. При аккомодации преломляющая сила хрусталика увеличивается и предмет становится ясно види­мым на более близком расстоянии.

Степень изменения преломляющей силы глаза при переходе от покоя ресничной мышцы’до максимальной аккомодации называет­ся силой или объемом аккомодации. Сила преломления линзы об­ратно пропорциональна ее фокусному расстоянию. Измеряется она в диоптриях (сокращенно D).

Вопрос 34.

Близорукость, косоглазие и другие нарушения зрения у детей, их профилактика.

Близорукость чаще всего связана с увеличением передне-заднего диаметра глаза. В близоруком глазу параллель­ные лучи сходятся не на сетчатке, а впереди нее. На сетчатке сой­дутся лучи, исходящие от более близких предметов. При сильной близорукости дальняя точка ясного видения может находиться на расстоянии меньше 25 см от глаза. У взрослого при ее отстоянии на 25 см ближняя точка находится в 7 см от глаза, а при отстоянии дальней точки на 10 см ближняя находится на расстоянии 5 см .-Для исправления близорукости применяют очки с вогнутыми стеклами, которые, уменьшая преломление, позволяют лучам, иду­щим от удаленных предметов, сходиться на сетчатке.

У детей не кажущаяся, а настоящая близорукость выявляется, как правило, лишь после трехлетнего возраста. Чаще всего близо­рукость передается по наследству. Однако она может быть и приобретенной. Развитию близорукости способствует усиленное на­пряжение органа зрения во время занятий, рассматривания карти­нок, вышивания и др., особенно если не соблюдаются гигиениче­ские требования к посадке, освещению помещений, к учебным и наглядным пособиям. Близорукость чаще развивается у ослаблен­ных детей.

Близорукость может резко изменить поведение и даже характер ребенка. Он становится рассеянным, близко подносит предметы к глазам, прищуривается, горбится, жалуется на головные боли, бо­ли в глазах, на то, что предметы перед глазами расплываются. Не­которые дети при сосредоточенном рассматривании предметов, осо­бенно при утомлении, начинают косить глазами. Все это не должно

пройти мимо внимания воспитателя. При подозрении на близору­кость. ребенка надо направить к офтальмологу, т. е. врачу по глаз­ным болезням.

Детей с плохим Прением обычно во время занятий сажают бли­же к источнику света и к столу воспитателя. Воспитатели должны следить за тем, чтобы выписанные детям очки. были правильно по—догнаны к глазам, а заушины очков удобно и плотно держались за ушами. При постоянном перекашивании, сползании очков они могут оказаться бесполезными и даже вредными, а потому при выявле­нии дефектов очки надо отдавать оптику для исправления. Де­ти, которым выписаны очки, обязательно должны пользоваться ими. В противном случае близорукость будет быстро прогресси­ровать. . Дальнозоркость. При дальнозоркости человек ясно видит более или менее удаленные предметы, что объясняется уменьшен­ным передне-задним диаметром глазного яблока. В дальнозорком глазу параллельные лучи сходятся позади сетчатки. Чтобы они сошлись на сетчатке, глаз должен аккомодировать. Иными слова­ми, без аккомодации дальнозоркий глаз вообще не может ясно видеть. Поскольку сила аккомодации частично используется при установке глаза на даль, ее остающейся силы недостаточно для ясного видения близких предметов. Поэтому при дальнозорко­сти ближняя точка ясного видения всегда отстоит от глаза на большее расстояние, чем при нормальном зрении. Для исправле­ния дальнозоркости необходимо усилить преломление при помощи очков с двояковыпуклыми стеклами.У детей дошкольно­го возраста дальнозоркость выявляется редко.

Вопрос 35.

Гигиена зрения

Чрезмерное напряжение зрения, если оно часто повторяется, спо­собствует развитию близорукости, а нередко и косоглазия. Поэтому необходимо большое внимание уделять организации такой обста­новки, которая облегчает функцию органов зрения. Глаза напряга­ются при недостаточном освещении, а также при сильной аккомо­дации. Поэтому надо следить за освещением помещений, в кото­рых занимаются дошкольники, и за правильным расстоянием от рабочей поверхности до глаз: менее всего утомляется зрение при расстоянии, равном 15—20 см. На занятиях, связанных с дли­тельным напряжением глазных мышц (рисование, лепка, вышива­ние), время от времени надо отвлекать детей от’работы каким-либо замечанием или показом наглядных пособий, чтобы пере­ключить зрение с близкого расстояния на далекое и дать отдых рес­ничной мышце.

Особое внимание надо обращать на правильную с гигиениче­ской точки зрения организацию просмотра диапозитивных фильмов и телевизионных передач. Количество кадров в диапозитивном фильме не должно превышать для младших групп детского сада 25—30, средних 35—40 и старших 45—50. Детям 3—5 лет реко­мендуется смотреть не более одного фильма (15—20 минут), а стар­шим (6—7 лет) — два фильма, если общая их продолжительность не превышает 20—25 минут.

Экраны при показе диафильмов должны быть белыми: белое полотно, ватманская бумага. Лучше всего иметь специальный экран ЭПП-1 или ЭПП-2 с коэффициентом отражения, равным 0,8. Экран располагают на уровне глаз дошкольников, сидящих на стуле. Так как яркость освещения экрана зависит от срока службы лампы в фильмоскопе, то надо следить, чтобы этот срок не превышал 20— 25 часов, т. е. 40—60 сеансов. Расстояние первого ряда стульев от экрана надо делать равным двойной ширине экрана (см. табл. 2). Между рядами стульев должно быть не менее 50 см, а последний ряд стульев располагают не далее 4 л» от экрана.

Смотреть телевизионные передачи следует не чаще двух раз в неделю. Телевизор надо установить на столике высотой 1—1,2 м над полом и по испытательной таблице получить хорошее качество изображения. Первый ряд стульев должен быть не ближе 2, а по­следний не дальше 5 м от экрана; в промежутке устанавливаются еще 5 рядов по 4—5 стульев. Продолжительность телевизионной передачи для детей 3—4 лет должна быть не более 10—15, а для детей 5—7 лет — не более 25—30 минут. В помещении, кроме све­тящегося экрана, рекомендуется иметь еще небольшой источник

Таблица 2

света, расположенный за спиной зрителей, что способствует мень­шему утомлению зрения.

Освещение. При хорошем освещении все функции организма протекают более интенсивно, улучшается настроение, повышается активность, работоспособность ребенка. Наилучшим считается есте­ственное дневное освещение. Для большей освещенности окна иг­ровых и групповых комнат обычно смотрят на/юг, юго-восток или юго-запад. Свет не должны заслонять ни противоположные здания, ни высокие деревья.

Чем больше площадь застекленной поверхности окон, тем свет­лее в комнате. Минимально допустимой нормой считается такая площадь, при которой в ясный день на самом отдаленном от окна месте освещенность равна 100 люксам.

Отсюда следует, что, чем больше площадь помещения, тем боль­ше должна быть световая поверхность окон. Отношение площади остекленной поверхности окон к площади пола называется свето­вым коэффициентом. Для игровых и групповых помещений в горо­дах принята норма светового коэффициента, равная 1:4— 1:5; в сельской местности, где здания, как правило, строят на открытых со всех сторон площадках, световой коэффициент допускается рав­ным 1:5—1:6. Световой коэффициент для остальных помещений должен быть не менее 1 : 8.

Чем дальше место от окна, тем хуже его освещенность естест­венным светом. Для достаточной освещенности глубина помещения не должна превышать двойное расстояние от пола до верхнего края окна. Если глубина помещения равна 6 м, то верхний край окна должен быть на расстоянии 3 м от пола.

Ни цветы, которые могут поглощать до 30% света, ни посторон­ние предметы, ни шторы не должны мешать прохождению света в помещение, где находятся дети. В игровых и групповых комнатах допустимы только узкие занавески из светлой, хорошо стирающей­ся ткани, которые располагаются на кольцах по краям окон и при­меняются в тех случаях, когда необходимо ограничить прохожде­ние в помещение прямых солнечных лучей. Матовые и замазанные мелом оконные стекла в детских учреждениях не допускаются. Необ­ходимо заботиться, чтобы стекла были гладкие, высокого качества.

Для лучшего освещения детских помещений стены и мебель окрашивают в светлые тона, отражающие наибольшее количество света. Нижнюю часть стен (1,5— J,8 м от пола), подвергающуюся большому загрязнению, окрашивают светлыми масляными краска­ми, устойчивыми к влиянию горячей воды, мыла и дезинфицирую­щих растворов. Остальную часть стен покрывают клеевой краской, а потолки помещений белят.

Для искусственного освещения обычно пользуются электричест­вом. Достаточное освещение групповых комнат площадью в 62 кв. м дают 8 ламп мощностью 300 ватт каждая, подвешенных в два ряда (по 4 лампы в ряду) на уровне 2,8—3 м от пола. В спальнях пло-

щадью в 70 кв. м надо иметь 8 ламп по 150 ватт каждая. Кроме ‘ того, в спальнях и примыкающих к ним коридорах необходимо до­полнительное ночное освещение с помощью ламп синего цвета. Лампы должны быть помещены в арматуру, смягчающую их яр­кость и дающую рассеянный свет.. Установлено, что -прямой, не ог­ражденный арматурой свет снижает работоспособность, сильно слепит глаза, вызывает резкие тени. Так, при прямом освещении тень от туловища понижает освещенность рабочего места на 50%, а от руки даже на 80%.

Значительное преимущество перед обычным электрическим ос­вещением имеет освещение так называемым «дневным светом» — люминесцентными источниками света. Люминесцентные лампы да­ют высокую световую отдачу, позволяющую значительно увеличить норму освещенности. Их спектр в своей видимой части близок к спектру естественного света; кроме того, они дают рассеянный свет, не создающий резких теней. Потребление электроэнергии при лю­минесцентном освещении почти в три раза меньше, чем при элек­трическом той же интенсивности.

Естественное и искусственное освещение не достигает цели, ес­ли отсутствует надлежащий уход за источниками света и помеще-• ниями, в которых они находятся. Так, например, замерзшее стекло поглощает до 80% световых лучей, грязь может снижать прохож­дение света на 25% и больше. Значительно снижается мощность электрических ламп .по мере их эксплуатации. Поэтому необходим систематический уход как за стеклами окон и арматурой, так и за , самим помещением, его стенами и потолком. Надо следить также^г

за своевременной сменой устаревших ламп.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *