Витамины как кофакторы ферментов

Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов, (на примере трансаминаз и дегидрогеназ, витаминов В6 , РР, В2)

⇐ ПредыдущаяСтр 13 из 62

Кофакторы ферментов: ионы металлов и коферменты.

Активность ряда ферментов (простые белки) в норме зависит только от их структуры, тогда как для других, названных холоферментами (сложные белки), требуются кофакторы — вещества небелковой природы, в роли которых могут быть сложные органические соединения (коферменты) и ионы металлов.

Кофактор может образовывать с апоферментом прочные ковалентные связи. В этом случае кофермент называют простетической группой фермента. Приме­рами могут служить ФАД, ФМН, биотин, ковалентно связанный с остатком ли­зина в активном центре, Zn2+, который содержится в активном центре карбоксипептидазы. В том случае, если кофермент связывается с апоферментом нековалентными связями только на время химической реакции (НАД+ и НАДФ+), он может рассматриваться в качестве второго субстрата данного фермента Один и тот же кофермент может участвовать в разных биохимических реакциях, ком­плементарно связываясь с разными апоферментами. Собственной каталитиче­ской активностью коферменты не обладают.

Апофермент формирует активный центр, отвечает за специфичность действия фермента, фиксирует и ориентирует субстрат в активном центре и создает усло­вия для преобразования субстрата в продукты реакции. Ионы металла выполняют две главные функции.

I). Стабилизируют нативную конформацию фермента, структуру его активного центра и субстрата. 2). Участвуют в ферментативном катализе.

1). Металлоферменты, лишенные ионов металла, либо сохраняют способность к химическому катализу, утрачивая стабильность, либо полностью теряют актив­ность. Например, щелочная фосфатаза — металлофермент, в активном центре ко­торого находится Zn2+, лишенная ионов цинка щелочная фосфатаза, теряет фер­ментативную активность, но восстанавливает ее после добавления металла. В некоторых металлоферментах ион металла (Mg2+, Mn2+, Zn2+, Co2+, Мо2+) уча­ствует в образовании связи между молекулой субстрата и активным центром кофермента. в отсутствие иона эти ферменты не обладают активностью. Ряд ферментов в качестве субстрата используют комплекс превращаемого вещества с ионом. Для большинства киназ одним из субстратов служит не молекула АТФ, а комплекс Mg2+-ATФ.

2). Ферментативный электрофильный катализ. Ионы металла непосредст­венно участвуют в катализе и локализованы в активном центре фермента.В ак­тивном центре ферментов могут содержатся Zn 2+, Mn 2+, Fe 2+, Си 2+. Пример элек-трофильного катализа — действие карбоангидразы, содержащей ион цинка в ак­тивном центре.

B6 Коферментные функции выпол­няют два фосфорилированных производных пиридоксина: пиридоксальфосфат и пиридоксаминофосфат. Распад коферментов идет путем дефосфорилирования и окисления с образо­ванием 4-пиридоксиловой ки­слоты. которая выводится из ор­ганизма.

Коферментные формы витамина В6 включены в реакции, катализируемые почти всеми классами ферментов. Наиболее зна­чительная группа пиридоксалевых ферментов — аминотрансферазы. Пиридоксальзависимые (пиридоксалевые ферменты) ферменты катализи­руют взаимопревращения и распад аминокислот (регулируют аминокислот­ный состав крови при разном аминокислотном составе пиши), участвуют в специфических реакциях метаболизма отдельных аминокислот (серина, тре­онина, триптофана). Участвуют в обмене липидов, синтезе сфинголипидов. В качестве кофактора ферментов участвуют в начальных стадиях синтеза гема. Влияют на обмен жирных кислот.

PP — предшественник коферментов -никотинамидадениндинуклеотида (НАД+) и никотинамидадениндинуклеотид-фосфата (НАДФ ), входящих в состав дегидрогеназ и редуктаз.

НАД+ и НАДФ+ приобретают коферментные функции после присоединения к никотинамиду радикала, включающего остаток рибозы, пирофосфат и нуклеотид — аденин. Витамин РР такими функциями не обладает.

1. НАД+ — кофермент дегидрогеназ, участвующих в реакциях окисления глю­козы, жирных кислот, глицерола, аминокислот после их дезаминирования; явля­ется коферментом дегидрогеназ цикла Кребса (кроме сукцинатдегидрогеназы). В этих реакциях кофермент выполняет функцию промежуточного акцептора электронов и протонов.

2. НАДН и НАДФН — коферменты реакций (НАДН-оксидазной и НАДФН-оксидазной), способствующих возникновению активных форм кислорода в фагоцитах.

B2 Кофермент ФМН и ФАД

1. ФМН и ФАД — коферменты оксидаз, переносящих электроны с окисляемого субстрата на кислород. Это ферменты распада аминокислот (оксидазы D- и L-аминокислот), нуклеотидов (ксантиноксидаза), биогенных аминов (моно- и диа-минооксидазы).

2. ФАД — кофермент пируват- и альфа-кетоглутаратдегидрогеназных комплек­сов. Совместно с тиаминпирофосфатом и другими коферментами катализируют окислительное декарбоксилирование кетокислот.

Коферментная функция водорастворимых витаминов: НАД,ФАД.

⇐ ПредыдущаяСтр 3 из 11

Коферментная функция витаминов заключается в их вхождении в состав коферментов.Кофермент имеет 2 функциональных участка, один из которых отвечает за связь с апоферментом, а другой принимает непосредственное участие в каталитическом акте.Как правило, активная фрма витаминов принимает участие именно в катализе.

НАД(Никотинамидадениндинуклеотид)-производная витамина РР(В5).

НАД — зависимые дегидрогеназы:

·Алкоголъдегидрогеназа (спиртовое брожение)

·Лактатдегидрогеназа (гликолиз, гликогенолиз)

·Глицероалъдегидфосфатдегидрогеназа (гликолитическое окисление)

·Изоцитратдегидрогеназа, а-кетоглутаратдегидрогеназа, малатдегидрогеназа (цикл Кребса).

·Пируват- и а-кетоглутаратдегидрогеназа (окислительное декарбоксилирование а-кетокислот: ПВК и а-кетоглутарата).

·Первый комплекс цепи дыхательных ферментов (окислительное фосфорилирование)

Осуществляют извлечение энергии из субстратов путем их биологического окисление и сопряжения с тканевым дыханием (катаболизм).

ФАД (флавинадениндинуклеотид)- производная витамина В2.

ФАД — зависимые дегидрогеназы:

1)Сукцинатдегидрогеназа (цикл Кребса)

2)Ацил-КоА-дегидрогеназа (Р-окисление жирных кислот)

3)Пируват- и а-кетоглутаратдегидрогеназа (окислительное декарбоксилирование а-кетокислот: ПВК и а-кетоглутарата).

4) Второй комплекс цепи дыхательных ферментов (окислителъное фосфорилирование).

Окисленная форма НАД и ФАД в качестве акцептора принимает от субстратов атомы водорода (биологическое окисление). Восстановленная форма НАД и ФАД в качестве донора передает атомы водорода в цепь дыхательных ферментов (тканевое дыхание). Участвуют в окислительном расщеплении субстратов (катаболизм) и, тем самым, обеспечивают клетки энергией.

25. Строение, роль витамина В1 в организме.

Витамин В1(тиамин, аневрин) в своей структуре содержит пиримидиновый и тиазоловый гетероциклы, соединенные метиленовым мостиком, и остаток этанола.


Биологическая роль:

·Коферментная функция – витамин В1 в форме тиаминпирофосфата(ТПФ), где пирофосфат присоединяется по гидроксильной группе остатка этанола, находится в составе более чем 30 разных ферментов. В форме кофермента он обеспечивает течение ключевых реакций превращений пировиноградной и α-кетоглутаровой кислот до ацетил-КоА и сукцинил-КоА соответственно.

·Дефицит В1 в составе пируват-дегидрогеназного комплекса, содержащего ТПФ в качестве кофермента, приводит к накоплению пирувата в организме, негативному влиянию на нервную ткань, на функции головного мозга.

·Витамин В1 в форме тиаминпирофосфата входит также в состав молекулы транскетолазы. фермента, катали зирующего превращение рибулозо-5-фосфата в рибозо-5 фосфат в пентозном превращении гексоз.

·Тиаминпирофосфат требуется для синтеза ацетилхолина.

26. Строение, роль витамина В2 в организме.

Витамин В2 (рибофлавин) в основе структурной фор­мулы имеет изоаллоксазиновый гетероцикл и спирт рибитол.

Биологическая роль:

После всасывания витамина В2в тон­ком кишечнике он фосфорилируется в различных тканях,

образуя два кофермента — ФМН (флавинмононуклеотид) и ФАД (флавинадениндинуклеотид). Эти коферменты, нахо­дясь в составе оксидоредуктаз, участвуют в цепи реакций биологического окисления. Таким образом, витамин В1 уча­ствует в реакциях получения энергии в форме АТФ.

Дефицит его в организме вызывает задержку роста, слабость хотя аппетит животного сохраняется. У млекопитающих раз­виваются дерматиты, у птиц выражена слабость ног.

27. Строение, роль витамина В3 в организме.

Витамин В3(пантотеновая кислота,пнтотен, антидермитный) в своей структуре содержит β-аланин и производное масляной кислоты.

Биологическая роль:

Известно около 70 ферментных систем, где используется коэнзим-A (HS-KoA) и ацилпереносящий белок (АПБ), содержащие в своей структуре витамин В3. HS-KoA участвует в обмене жиров (окисление и синтео жирных кислот, синтез нейтральных жиров, фосфолипи­дов, стероидных гормонов), в обмене белков (синтез гемо­глобина), в обмене углеводов через цикл трикарбоновых кислот. HS-KoA вовлекается в различные реакции перено­са ацильных групп, в которых он выступает как акцептор или как донор ацильных групп.

ВОДОРАСТВОРИМЫЕ ВИТАМИНЫ. Большинство водорастворимых витаминов относятся к группе В и обладают коферментными функциями (входят в состав коферментов и простетических групп)

Большинство водорастворимых витаминов относятся к группе В и обладают коферментными функциями (входят в состав коферментов и простетических групп). Некоферментные свойства витаминов характеризуются способностью участвовать в регуляции метаболизма, проявлять антимутагенное действие, усиливать защитные свойства организма, повышать свертываемость крови и др.

Витамин В1 (тиамин). Молекула тиамина состоит из пиримидинового и тиазолового колец, соединенных метиленовой группой (рис. 33).

Коферментной формой витамина является тиаминдифосфат (тиаминпирофосфат), который участвует в двух важнейших реакциях:

1) в составе декарбоксилаз кетокислот обеспечивает окислительное декарбоксилирование a-кетокислот (пирувата, a-кетоглутарата, кетоаналогов аминокислот);

2) в составе транскетолаз, катализирующих реакции переноса альдегидной группы, осуществляет транскетолазные реакции пентозофосфатных путей и цикла Кальвина.

Рис. 33. Структура витамина В1

Витамин В2 (рибофлавин).Молекула рибофлавина представляет собой гетероциклическое соединение изоаллоксазин (сочетание бензольного, пиразинового и пиримидиновых колец), к которому присоединен 5-атомный спирт – рибитол (рис. 34).

Рис. 34. Структура витамина В1

Коферментными формами витамина являются ФАД и ФМН, структура которых приведена ранее. Флавиновые коферменты служат переносчиками восстановительных эквивалентов и входят в состав дегидрогеназ и оксидаз, катализирующих различные окислительно-восстановительные реакции. ФМН синтезируется из свободного рибофлавина и АТФ, а ФАД – из ФМН и АТФ при участии соответствующих ферментов.

Витамин В3 (пантотеновая кислота). Коферментной формой витамина является кофермент А, или коэнзим А (СоА). Это соединение служит коферментом ацилпереносящих ферментов, принимающих участие в реакциях цикла трикарбоновых кислот, b-окисления жирных кислот и др. Структура витамина представлена на рис. 35.

Рис. 35. Структура витамина В3

Реакционноспособной группой кофермента А служит сульфгидрильная (-SH) группа (рис. 36), расположенная на конце длинной, относительно гибкой цепи. По этой группе с помощью тиоэфирной связи осуществляется присоединение ацильных остатков. Образующиеся в результате производные носят название ацил-СоА. Простейшим ацильным производным является ацетил-СоА, который характеризуется высоким потенциалом переноса ацетильной группы. Он занимает центральное место в реакциях метаболизма углеводов, аминокислот и жирных кислот.

Рис. 36. Структура кофермента А

Витамин В5 (никотинамид, никотиновая кислота, витамин РР). В природе витамин В5 встречается в двух формах: в виде никотиновой кислоты и никотинамида, представляющих собой соединения пиридинового ряда (рис. 37).

Рис. 37. Структура витамина В5

Коферментными формами витамина являются НАД+ и НАДФ+, структура которых приведена ранее. Никотинамидные коферменты служат переносчиками восстановительных эквивалентов и входят в состав дегидрогеназ, катализирующих различные окислительно-восстановительные реакции.

Витамин В6 (пиридоксин). Он включает три производных пиридина: пиридоксаль, пиридоксин и пиридоксамин (рис. 38). Каждое из этих соединений способно превращаться в коферментную форму – пиридоксальфосфат. Он входит в состав аминотрансфераз, катализирующих реакции трансаминирования аминокислот. При участии пиридоксальфосфат-зависимых декарбоксилаз происходит декарбоксилирование аминокислот. Коферментные функции пиридоксальфосфата проявляются также в реакциях дезаминирования, изомеризации и синтеза аминокислот, фосфорилирования углеводов, метаболизма жирных кислот и липидов.

Рис. 38. Структура витамина В6

Витамин В9 (фолиевая кислота). Представляет собой птероилмоно-глутаминовую кислоту, которая состоит из производного птеридина, п-аминобензойной и глутаминовой кислот (рис. 39).

Рис. 39. Структура фолиевой кислоты

Коферментной формой фолиевой кислоты является тетрагидрофолиевая, которая осуществляет перенос одноуглеродных фрагментов (рис. 40).

Рис. 40. Структура тетрагидрофолиевой кислоты

Витамин В12 (кобаламин). Это единственный металлсодержащий витамин. Группа кобаламинов представляет собой сложные соединения, состоящие из следующих частей: атома кобальта, двух связанных с кобальтом лигандов (верхнего и нижнего), тетрапиррольного кольца коррина и аминопропанолового мостика (рис. 41).

Атом кобальта связан с четырьмя атомами азота пиррольных колец, которые образуют планарную структуру. Верхний лиганд Х может быть представлен цианид-ионом (цианкобаламин), гидроксильной группой (гидроксикобаламин), ионами нитрита, нитрата, хлора и др. Нижний лиганд представлен нуклеотидом, состоящим из 5,6-диметилбензимидазола, остатков a-D-рибозы и фосфорной кислоты, и расположенным перпендикулярно плоскости коррина. Нуклеотид через аминопропаноловый мостик связан в цикл с заместителем атома углерода одного из пиррольных колец.

Рис. 41. Структура тетрагидрофолиевой кислоты

Коферментной формой витамина является 5’-дезоксиаденозил-кобаламин (кобамамидный кофермент), у которого верхний лиганд представлен остатком 5’-дезоксиаденозина, связанного с атомом кобальта необычной кобальт-углеродной связью.

Биохимические функции аденозилкобаламина состоят в изомеризации соединений, имеющей место в углеводном, азотистом, нуклеиновом и липидном обмене, в биосинтезе метионина из гомоцистеина, восстановлении рибонуклеотидов до дезоксирибонуклеотидов и других процессах.

Витамин С (аскорбиновая кислота). Представляет собой g-лактон 2,3-дегидро-L-гулоновой кислоты. Молекула витамина имеет четыре оптических изомера. Биологически активным соединением является только L-аскорбиновая кислота, которая в организме присутствует также и в виде окисленной формы – L-дегидроаскорбиновой кислоты (2,3-дикето-L-гулоновой кислоты), служащей транспортной формой витамина (рис. 42).

Рис. 42. Структура витамина С

Одним из основных свойств аскорбиновой кислоты является ее способность к обратимым окислительно-восстановительным превращениям, которая лежит в основе физиологической активности витамина: L-аскорбиновая кислота – сильный восстановитель, а образующаяся при этом L-дегидроаскорбиновая кислота легко восстанавливается с помощью редуктазы. Среди множества реакций, протекающих с участием витамина С, можно упомянуть гидроксилирование предшественников некоторых гормонов, синтез коллагена и желчных кислот, расщепление тирозина и лизина и др.

Аскорбиновая кислота служит сильным антиоксидантом, предохраняющим биологически активные вещества клетки от действия свободных радикалов, а также увеличивает всасывание железа и ингибирует образование нитрозаминов (канцерогенов).

Витамин Н (биотин). Молекула биотина состоит из имидазольного и тиофенового колец, являющихся гетероциклической частью, а боковая цепь представлена остатком валериановой кислоты (рис. 43).

Рис. 43. Структура биотина

Коферментной формой биотина служит N5-карбоксибиотин («активный карбоксил»), который ковалентно связан с белковой частью фермента (рис. 44).

Рис. 44. Структура биотина

Биотин служит простетической группой ферментов карбоксилаз, катализирующих реакции переноса карбоксильной группы, которые лежат в основе биосинтеза жирных кислот, превращения пирувата в оксалоацетат, синтеза пуриновых оснований, аминокислот и других процессах.

Витамин Р (биофлавоноиды). Это группа соединений фенольной природы, представляющих собой производные флавона (рис. 45). К ним относятся рутин, кверцетин, цитрин, катехины, кумарины, галловая кислота и ее производные.

Рис. 45. Структура флавона

Биологическое действие биофлавоноидов обусловлено их взаимосвязью с аскорбиновой кислотой. Они препятствуют окислению L-аскорбиновой кислоты в L-дегидроаскорбиновую, а также восстанавливают последнюю при участии глутатиона. Витамин Р регулирует проницаемость и повышает прочность кровеносных капилляров, а также обладает антиоксидантным и противоопухолевым действием.

Витамин В2 (рибофлавин, витамин роста)

Источники

Достаточное количество содержат мясные продукты, печень, почки, молочные продукты, дрожжи. Также витамин образуется кишечными бактериями.

Суточная потребность

2,0-2,5 мг.

Строение

В состав рибофлавина входит флавин – изоаллоксазиновое кольцо с заместителями (азотистое основание) и спирт рибитол.

Строение витамина В2

Коферментные формы витамина дополнительно содержат либо только фосфорную кислоту – флавинмононуклеотид (ФМН), либо фосфорную кислоту, дополнительно связанную с АМФ – флавинадениндинуклеотид.

Строение окисленных форм ФАД и ФМН

Метаболизм

В кишечнике рибофлавин освобождается из состава пищевых ФМН и ФАД, и диффундирует в кровь. В слизистой кишечника и других тканях вновь образуется ФМН и ФАД.

Биохимические функции

Кофермент оксидоредуктаз – обеспечивает перенос 2 атомов водорода в окислительно-восстановительных реакциях.

Механизм участия флавинового кофермента в биохимической реакции

Витамин содержат:

1. Дегидрогеназы энергетического обмена – пируватдегидрогеназа (окисление пировиноградной кислоты), α-кетоглутаратдегидрогеназа и сукцинатдегидрогеназа (цикл трикарбоновых кислот), ацил-SКоА-дегидрогеназа (окисление жирных кислот), митохондриальная α-глицеролфосфатдегидрогеназа (челночная система).

Пример дегидрогеназной реакции с участием ФАД

2. Оксидазы, окисляющие субстраты с участием молекулярного кислорода. Например, прямое окислительное дезаминирование аминокислот или обезвреживание биогенных аминов (гистамин, ГАМК).

Пример оксидазной реакции с участием ФАД
(обезвреживание биогенных аминов)

Гиповитаминоз B2

Причина

Пищевая недостаточность, хранение пищевых продуктов на свету, фототерапия, алкоголизм и нарушения ЖКТ.

Клиническая картина

В первую очередь страдают высокоаэробные ткани – эпителий кожи и слизистых. Проявляется как сухость ротовой полости, губ и роговицы; хейлоз, т.е. трещины в уголках рта и на губах («заеды»), глоссит (фуксиновый язык), шелушение кожи в районе носогубного треугольника, мошонки, ушей и шеи, конъюнктивит и блефарит.

Сухость конъюнктивы и ее воспаление ведут к компенсаторному увеличению кровотока в этой зоне и улучшению снабжения ее кислородом, что проявляется как васкуляризация роговицы.

Антивитамины В2

1. Акрихин (атебрин) – ингибирует функцию рибофлавина у простейших. Используется при лечении малярии, кожного лейшманиоза, трихомониаза, гельминтозов (лямблиоз, тениидоз).

2. Мегафен – тормозит образование ФАД в нервной ткани, используется как седативное средство.

3. Токсофлавин – конкурентный ингибитор флавиновых дегидрогеназ.

Лекарственные формы

Свободный рибофлавин, ФМН и ФАД (коферментные формы).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *