Коммутативность ассоциативность дистрибутивность

Свойства алгебраических операций

Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно отно­сительно сложения. Аналогичными свойствами обладают объедине­ние и пересечение множеств.

Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозна­чать символами: * (читается — «звездочка») и о (читается — «кружок»).

Важнейшим свойством алгебраических операций является свойство ассоциативности.

Определение. Алгебраическая операция *, заданная на множествеX, называется ассоциативной, если для любых элементов х, у и z из множества X выполняется равенство

(x*y)*z=x*(y*z).

Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*у*z вместо (х*у)*z и х*(у*z).

Например, ассоциативно сложение натуральных чисел: для любых на­туральных чисел х, у и z выполняется равенство (х + у) + z = x + (у + z). Ассоциативно сложение рациональных и действительных чисел. По­этому сумму нескольких чисел можно записывать без скобок.

Ассоциативность алгебраической операции * позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но пере­ставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.

Определение. Алгебраическая операция * на множестве X называ­ется коммутативной, если для любых двух элементов х и у из мно­жества X выполняется равенство

х*у = у*х.

Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х · у = у · х. Эти равен­ства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.

Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х — у ≠ у — х. На­пример, 12-7≠7-12.

Если на множестве X заданы две алгебраические операции * и о, то они могут быть связаны друг с другом свойством дистрибутивности.

Определение. Алгебраическая операция о называется дистрибу­тивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:

1) (х*y)оz = (x o z)*(y o z) и 2) z o (х*у) = (z o х)*(z о у).

Если выполняется только равенство 1), то операцию о называют дистрибутивной справа относительно операции *; если же выполняет­ся только равенство 2), то операцию о называют дистрибутивной слева относительно операции *.

Выясним, в каких случаях различают дистрибутивность справа и слева.

Рассмотрим на множестве натуральных чисел две операции: воз­ведение в степень (она соответствует операции о в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х·у)z — = хz-уz. Как известно из алгебры, полученное равенство справедливо для любых натураль­ных чисел х, у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получа­ем х уz = ху-хz. Но это равенство выполняется не всегда, т.е. опера­ция возведения в степень не является дистрибутивной слева отно­сительно умножения. Такая ситуация является следствием того, что возведение в степень — операция, не обладающая свойством коммутативности.

Если взять сложение и умножение натуральных чисел, то, как из­вестно, умножение дистрибутивно относительно сложения: для лю­бых натуральных чисел х, у и z выполняются равенства

(x+y)·z + x·z + y·z и z·(x+y) = z·x + z·y

А так как умножение коммутативно, то не имеет значения, где писать множитель z — справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.

Выясним роль свойства дистрибутивности в преобразованиях вы­ражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак °. Проиллюстрируем сказанное на при­мере преобразования выражения (x + у)·(z + р). Так как умножение дистрибутивно относительно сложения, то

(x + у)·(z + р)= x·(z + р) + у·(z + р)= (x·z + x·р) + (у·z + y·р).

А поскольку сложение ассоциативно, то последнюю запись можно за­писать без скобок. Следовательно, (x + у)·(z + р)= )=x·z + x·р +у·z + y·р.

Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре ней­тральными и поглощающими.

Определение. Элемент е из множества X называется нейтраль­ным относительно алгебраической операции *, если для любого эле­мента х из множества X выполняются равенства х*е=е*х =х.

Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.

Определение. Элемент р из множества X называется поглощаю­щим относительно алгебраической операции *, если для любого эле­мента х из множества X выполняются равенства х*р=р*х=р.

Если поглощающий элемент относительно алгебраической опера­ции существует, то он единственный.

Так, в множестве Zо целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества Zо выполняются равенства х + 0 = 0 + х = х. Это же число нуль является поглощающим элементом относительно умноже­ния: для любого x из множества Zо верны равенства: х·0 = 0·х = 0.

Как известно, вычитание чисел является операцией, обратной сло­жению. Но чтобы дать определение обратной операции в общем виде, надоопределить понятие сократимой операции.

Например, сократимо сложение натуральных чисел: из равенств а+х=а+у и х+а=у+а следует, что х= у.

Определение. Пусть * — сократимая и коммутативная алгебраи­ческая операция, заданная на множестве X. Тогда операция о назы­вается обратной для операции *, если х о у = z тогда и только тогда, когда у * z = х.

Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х — у тогда и только тогда, когда у + z = х.

Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество Zо целых неотрицательных чисел, которое являет­ся объединением множества натуральных чисел и нуля: Zо = N U{0}. На этом множестве рассматриваются алгебраические операции сло­жения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (Zо, +, •). Ее основ­ные характеристики:

1) Сложение и умножение на множестве Zоассоциативно и комму­тативно, а умножение дистрибутивно относительно сложения, т. е.:

(V х,у € Zо) х + у = у + х;

(V х,у € Zо) х·у = у·х;

(V х,у,z € Zо) (х + у) + z = х + (у + z);

(V х,у,z € Zо) (х·у)·z = х·(у·z);

(V х,у,z € Zо) (х +у)·z = х·z +у· z.

2) Сложение и умножение сократимы (исключая сокращение произ­ведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:

х + а= у + а => х = у

х·а = у·а => х = у.

3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:

(V х € Zо) х + 0 = 0 + х = x:;

(V х € Zо) х· 0 = 0· x = 0.

Единица является нейтральным элементом относительно умножения:

(V х,у € Zо) х •1 = 1•x = x.

4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в Zо частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умно­жению (исключая деление на нуль):

x-у = z ó у + z = x

х:у~2 ó у-z = х.

5) Вычитание и деление обладают свойствами:

(a-c)+b, если а≥с

(а+b) – c= a+(b-c), если b≥c

а — (b + с) = (а — b) — с = (a — с) — b, если a ≥ b + с;

(a+b):c = a:c+b:c, если a:c и b:c;

(a:c)·b, если а:с

(а·b) : c= a·(b:c), если b:c

а:(b-с) = (а:b):с= (а:с):b, если a:b и a:c

Названные характеристики алгебры (Zо, +, •) присутствует (явно или неявно) в любом начальном курсе математики.

Упражнения

1. Запишите, используя символы, что сложение и умножение ком­мутативно и ассоциативно на множестве Q рациональных чисел, а умножение дистрибутивно относительно сложения и вычитания.

2.Коммутативны ли следующие алгебраические операции:

а) возведение в степень на множестве N;

6) деление на множестве Q;

в) нахождение наибольшего общего делителя натуральных чисел?

3. Сократимо ли вычитание и деление на множестве Qрациональных чисел?

4.Какое множество является поглощающим элементом относительно пересечения множеств? Ответ обоснуйте.

5.Сформулируйте определение деления как операции, обратной умножению.

6.Выясните, как формулируются свойства сложения и умножения в различных учебниках по математике для начальной школы.

7.Запишите все свойства действий, характеризующих алгебру (Zо, +, •).

53. Основные выводы § 11

Изучив материал данного параграфа, мы познакомились со сле­дующими понятиями:

— алгебраическая операция на множестве;

— множество, замкнутое относительно алгебраической операции;

— частичная алгебраическая операция;

— нейтральный элемент относительно алгебраической операции;

— поглощающий элемент относительно алгебраической операции;

— обратная операция.

Мы выяснили, что алгебраические операции могут обладать свой­ствами:

— коммутативности;

— ассоциативности;

— дистрибутивности (слева и справа);

— сократимости.

Установили, что в начальном курсе математики изучают алгебру (Zо, +, •).

Дата добавления: 2016-05-11; просмотров: 4011;

Ассоциативность Коммутативность Ассоциативность Умножение

⇐ ПредыдущаяСтр 7 из 59

Наличие геометрического истолкования умножения и его большая практическая важность указывает на существование глубокой связи числовых отношений и простых геометрических форм. По крайней мере, становится ясным, что истолкование смысла арифметических операций хотя бы отчасти связано с упорядоченным расположением предметов в пространстве.

Арифметика, натуральные числа.

Перемножение скобок и закон дистрибутивности.

Геометрическое истолкование умножения позволяет понять смысл закона, связывающего операции сложения и умножения. Речь идёт о законе дистрибутивности.

Произведение чисел aиd можно рассматривать как выражение для площади прямоугольника со сторонами aиd. Разобьём сторону длиной d на две части, длины которых обозначим через bиc (таким образом, d = b+c). Исходный прямоугольник будет разбит на две части, сумма площадей которых как раз и равна площади исходного прямоугольника. Символически это обстоятельство можно записать в виде равенства a · (b+c) = a · b + a · c, которое выражает закон дистрибутивности.

Закон дистрибутивности позволяет перемножать скобки, содержащие любое количество слагаемых. При этом могут использоваться два подхода. Первый состоит в том, что исходное выражение преобразуется по законам коммутативности, ассоциативности и дистрибутивности. В этом состоит основной принцип алгебраических вычислений, приводящий к выводу новых формул. Приведём пример перемножения двух скобок, содержащих по два слагаемых:

(p + q) · (r + s) = (p + q) · r + (p + q) · s = r · (p + q) + s · (p + q) =

r · p + r · q + s · p + s · q

Второй подход основан на геометрическом истолковании умножения. Одну сторону прямоугольника разбивают на отрезки, число которых равно числу слагаемых в первой скобке, и возле каждого отрезка записывают одно из этих слагаемых. Со второй стороной прямоугольника поступают аналогично, применительно ко второй скобке. Проводя через точки деления вертикальные и горизонтальные линии, разбивают исходный прямоугольник на малые прямоугольники, в каждый из которых вписывают его площадь, равную произведению длин его сторон. Можно сказать, что исходный прямоугольник превратится в таблицу, клетками которой являются малые прямоугольники. Площадь большого прямоугольника одновременно равна произведению скобок и сумме малых прямоугольников. В итоге можно сформулировать правило: произведение скобок равно сумме всех попарных произведений каждого слагаемого из первой скобки на каждое слагаемое второй скобки.

Арифметика, натуральные числа.

Степени и корни.

По определению an = а · а · а · … · а · а(читается: а в степени n).

Особые названия, связанные с геометрическим истолкованием произведения, имеют степени a2 – квадрат, a3 – куб, a4 – биквадрат (двойной квадрат).

Символически обозначив операцию возведения в степень и получаемый при этом результат с помощью равенства an = c, мы можем перечислить соответствующие термины, используемые в арифметике:

а – основание степени, n – показатель степени, с – степень (n-я).

Легко понять, что а ≥ с, при этом равенство возможно только при а =1.

an ∙ am = an+m

Используя определение степени можно получить основные правила для перемножения и деления степеней.

1. an ∙ am = а · а · а · … · а · а · а · а · а · … · а · а = an+m.

Таким образом, при перемножении степеней с равными основаниями показатели степеней складываются.

2. Аналогично доказывается, что при делении степеней с равными основаниями показатели степеней вычитаются (n > m).

3. (an)m = · аn · аn · …· аn · аn = а · а · а · … · а · а = an∙m.

При возведении степени в степень показатели степеней перемножаются.

4. an ∙ bn = а · а · … · а · a · b · b · … · b · b = (ab)n.

При перемножении степеней с равными показателями основания степени перемножаются.

Если заданы основание степениа и показатель степени n, то мы можем вычислить соответствующую степень an = c. Иногда возникает обратная задача: заданы степеньс и её показатель n, нужно определить основание степени а. Поскольку пока мы говорим только о натуральных числах, искомое число а можно вычислить, перебрав все n-е степени натуральных чисел от 1 до с, то есть числа 1n, 2n, … cn, и сравнив их с числом с. Если одно из них (an) совпадёт с с, то основание степени (а) найдено. Говорят, что а является корнем n-й степени из числа с. Это обстоятельство выражают записью: . В случае когда n = 2, корень называют квадратным и не указывают степень: . Корень третьей степени называют кубическим. Для произвольных натуральных чисел с и n операция извлечения корня ( ) выполняется далеко не всегда, например, не существует натурального числа а, равного .

Из свойств степеней вытекают некоторые свойства корней:

, , .

Арифметика, натуральные числа.

Натуральные числа и измерение отрезков.

Геометрически натуральные числа принято изображать как уходящую в бесконечность последовательность равноотстоящих друг от друга точек, расположенных на луче. Данный образ хорошо передаёт суть счёта как последовательного перечисления однородных предметов, связанного с движением во времени. Здесь наглядно проявляется тот факт, что числами (и числительными) обозначается не только количество предметов, но и их порядок при счёте.

Понятие порядка является одним из важнейших в математике. Первым из натуральных чисел является единица, а каждое последующее число получается из предыдущего с помощью добавления единицы: 1, 2 = 1+ 1, 3 = 2 + 1 и т. д. Таким образом, чем больше натуральное число, тем дальше оно расположено от начала луча. Для обозначения порядка чисел и их относительной величины используются символы n < m (меньше), n ≤ m(меньше или равно), n > m (больше), n ≥ m (больше или равно), n = m (равно).

Геометрическое изображение натуральных чисел точками луча указывает на связь счёта с измерением отрезков. Фактически числовой луч превращён в линейку и позволяет измерить любой приложенный к ней отрезок и выразить его длину целым числом. Вообще же измерение отрезков является одной из самых естественных операций – речь идёт о подсчёте шагов при ходьбе.

Очень близкой к операции измерения отрезков является операция сравнения длины отрезков. Пусть, например, заданы два уже измеренных отрезка, длины которых равны n и m соответственно. Откладывая второй отрезок вдоль первого, можно установить, сколько раз он укладывается в первый и какой при этом остаётся остаток. Данная процедура даёт геометрический образ деления натуральных чисел с остатком.

Деление с остатком можно понимать как разбиение исходного множества из n элементов на два новых множества. Первое множество состоит из r элементов исходного множества, а второе состоит из q элементов, каждый из которых сам по себе является множеством, содержащим m элементов исходного. Если положить m равным десяти, мы придём к операции разбиения множества на десятки, что является важнейшим действием при записи чисел в десятичной системе счисления.

Простой способ деления числа n на число m с остатком таков. Из кучи, содержащей n предметов, последовательно удаляют совокупности по m предметов, считая число удалений (q), пока не останется r предметов, где r < m.

Date: 2015-05-04; view: 887; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *