Сжатый воздух

Сжатый воздух

Стр 1 из 3

Рекомендованная единица измерения давления, которая была введена в 1978 году Международной Системой Измерений (система СИ), это Паскаль (Па):

Сжатый воздух — это воздух, находящийся под давлением, превышающим атмосферное давление. Сжатый воздух является уникальным энергоносителем наряду с электроэнергией, природным газом и водой.

Свойства воздуха, термины и единицы измерения.

Воздух это смесь газов, главным образом состоящая из азота и кислорода, кроме этого в его состав входит углекислый газ, метан, водород, неон и др. Состав воздуха может манятся. Например, в промышленной зоне, состав воздуха отличается от воздуха в лесу или горах. Вместе с газами в состав воздуха входит и пары воды. Причем количество паров воды в воздухе зависит от колебания температуры окружающей среды. Например, при температуре «0» по Цельсию в 1 м3 воздуха будет содержаться до 5 граммов воды, а при +10 градусов по Цельсию, до 10 грамм воды.

Воздух обладает свойствами газов, а следовательно:

1) Не имеет своей формы и цвета.

2) Обладает весом и притяжение земли (атмосферное давление – вызываемое весом выше лежащих слоев воздуха и ударами его хаотичным движением молекул.)

Всякое тело испытывает со стороны воздуха определенное давление.

Давление – это сила которая действует на единицу площади перпендикулярно к ней.

3) Манометр – прибор измерения давления на троллейбусе. Два таких прибора (расположены в кабине). У каждого из манометров по две стрелки. Одна стрелка показывает в напорных и тормозных системах, а нижняя показывает давление в тормозных цилендрах.Если тормозная педаль не нажата то нижняя стрелка манометра будет «0»

4) Единица давления (техническая атмосфера: АТМ=кгс/см2) Техническая атмосфера — (русское обозначение: ат; международное: at) — равна давлению, производимому силой в 1 кгс, равномерно распределённой по перпендикулярной к ней плоской поверхности площадью 1 см2.

5) Воздух меняет свое состояние в зависимости от давления ( сжимаемость и упругость воздуха) и температуры и занимает весь предложенный ему объем.

Сжимаемость это свойство воздуха изменять свою плотность при изменении давления.

Плотность это количество воздуха содержащаяся в 1 м3.

Упругость – это свойство воздуха возвращающееся в исходное состояние после прекращения действия системы , вызывающее уменьшение его объема.

При сжатие температура воздуха возрастает, а при понижении, понижается.

Сжатый воздух – это воздух находящийся под давлением выше атмосферного

В повседневной, обыденной жизни мы практически не замечаем окружающий нас Воздух. Тем не менее, на протяжении всей истории человечества, люди использовали уникальные свойства воздуха. Изобретение паруса и кузнечного горна, ветряной мельницы и воздушного шара стали первыми шагами использования воздуха в качестве энергоносителя.

С изобретением компрессора настала эпоха индустриального использования сжатого воздуха.

(КОМПРЕССОР (от лат. compressio — сжатие) — Энергетическая машина или устройство для повышения давления и перемещения газа или их смесей.)

В производственных условиях сжатый воздух, в основном, используется для привода в действие устройств и механизмов с пневматическим приводом.

Пневматический привод (пневмопривод) это совокупность устройств, предназначенных для приведения в движение механизмов посредством пневматической энергии.

Во?здух — естественная смесь газов, главным образом азота и кислорода, составляющаяземную атмосферу. В воздухе содержится кислород, необходимый для нормального существования подавляющего числа живых организмов (дыхание, аэробы). Сжиганием топливана воздухе человечество издавна получает необходимое для жизни и производственной деятельности тепло. В соответствие с Федеральным Законом «Об охране атмосферного воздуха» под атмосферным воздухом понимается «жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений».

Химический состав

В 1754 году Джозеф Блэк экспериментально доказал, что воздух представляет собой смесь газов, а не однородное вещество.

Необходимо отметить, что состав воздуха может меняться: в крупных городах содержание углекислого газа будет выше, чем в лесах. В различных частях земли состав воздуха может варьироваться в пределах 1-3 % для каждого газа.

Кроме того, воздух всегда содержит пары воды. Так, при температуре 0 °C 1 м³ воздуха может вмещать максимально 5 граммов воды, а при температуре +10 °C — уже 10 граммов.

Ницше писал о воздухе, что это наивысшая и самая тонкая из материй. Из воздуха соткана свобода человека. Поэтому символ воздуха в первую очередь это символ свободы. Это свобода, для которой нет никаких преград, ведь воздух нельзя ограничить, нельзя поймать и придать ему форму.

Это символ не только физической, но и духовной свободы, свободы мысли. Поэтому присутствие символов воздуха на какой либо поверхности говорит о легкости мышления, свободе и непредсказуемости.

Плотность воздуха — масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Величина плотности воздуха является функцией от высоты производимых измерений, от его температуры и влажности. Обычно стандартной величиной считается значение 1,225 кг⁄м3, которая соответствует плотности сухого воздуха при 15°С на уровне моря.

Согласно ГОСТ 17433-80 сжатый воздух делится на 15 классов по качеству.

По этому ГОСТу регламентируется:
размер твердых частиц (d,мкм), содержание посторонних частиц (С) и капельных фракций масла (Oil) и воды (W), измеряемое в мг/м3, точка росы водяного пара.

Класс

D, мкм

С, мг/м3

Oil , мг/м3

W, мг/м3

Класс 0

0,5

0,001

Класс 1

Класс 2

Класс 3

Класс 4

Класс 5

Класс 6

Класс 7

Класс 8

Класс 9

Класс10

Класс11

*

12,5

Класс12

*

12,5

Класс13

*

Класс14

*

100

«*» — значение этого параметра не регламентируется.
Для классов; 0,1,3,5,7,9,11,13 — точка росы водяного пара должна быть ниже минимальной рабочей температуры не менее чем на 10 К.
Для классов; 2,4,6,8,10,12,14 значение точки росы водяного пара не регламентируется.

Воздух, свойства и химический состав

Воздух, свойства и химический состав.

Воздух – смесь газов главным образом из азота и кислорода – 98-99 % в сумме, а также аргона, углекислого газа, водорода, образующая земную атмосферу.

Воздух, роль и значение воздуха

Свойства воздуха

Химический состав воздуха. Из чего состоит воздух? Компоненты воздуха

Физические свойства воздуха


Воздух, роль и значение воздуха:

Воздух – смесь газов главным образом из азота и кислорода – 98-99 % в сумме, а также аргона, углекислого газа, водорода, образующая земную атмосферу.

В России действует Федеральный закон от 04.05.1999 № 96-ФЗ «Об охране атмосферного воздуха», которым дано понятие атмосферного воздуха.

Атмосферный воздух – жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений. Атмосферный воздух является жизненно важным компонентом окружающей среды, неотъемлемой частью среды обитания человека, растений и животных.

Воздух окружает планету Земля, образуя атмосферу планеты. Он удерживается гравитацией Земли. Атмосфера Земли защищает жизнь на земле, создавая давление, позволяющее жидкой воде существовать на поверхности Земли, поглощая вредное ультрафиолетовое солнечное излучение, нагревая поверхность за счет удержания тепла (парниковый эффект) и уменьшая перепады температур между днем и ночью (суточное изменение температуры).

Воздух необходим для нормального существования на Земле живых организмов. Без воздуха невозможна жизнь человека. Для человека жизненно важной составной частью воздуха является кислород. Кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы).

Если без еды человек может продержаться несколько недель, без воды – несколько дней, то без воздуха – только несколько минут (1 минуту – обычный человек и 5 минут – тренированные ныряльщики).

Общая масса воздуха на Земле составляет 5,13․1015 т и оказывает на поверхность Земли давление, равное на уровне моря в среднем 1,0333 кг на 1 см3.


Свойства воздуха:

Воздух не имеет цвета, вкуса и запаха. Полностью прозрачен.

Воздух сжимаем и упруг.

Теплый воздух легче холодного. Воздух сжимается при охлаждении и расширяется при нагревании.

Воздух сохраняет тепло и практически не пропускает его.

Он всегда заполняет весь объём и содержится везде, где есть пустое пространство.

Воздух необходим для процессов горения.

Химический состав воздуха. Из чего состоит воздух? Компоненты воздуха:

То, что воздух является смесью газов, а не простым веществом, было впервые экспериментально доказано в 1754 году Джозефом Блэком.

Примечание:

* в пересчете на сухой воздух (без водяного пара).

** концентрация водяного пара значительно варьируется от примерно 0,0001 % по объему в самых холодных частях атмосферы до 5% по объему в горячих, влажных воздушных массах (в пересчете на сухой воздух).

*** водяной пар составляет около 0,25% по массе от массы всей атмосферы.

Многие вещества природного происхождения также могут присутствовать в воздухе в локально и сезонно изменяющихся малых количествах в виде аэрозолей. К ним относятся пыль, состоящая из различных минеральных и органических веществ (например, серы и сернистых соединений: сероводорода, диоксида серы и пр.), пыльца и споры, морские брызги и вулканический пепел.

Кроме того, различные промышленные загрязнители (сера, хлор и их соединения, пр.) могут присутствовать в воздухе в виде газов или аэрозолей.

Состав воздуха может меняться в небольших пределах: в крупных городах содержание углекислого газа немного выше, чем в лесах; в высокогорье и на больших высотах концентрация кислорода немного ниже вследствие того, что молекулы кислорода тяжелее молекул азота, и поэтому концентрация кислорода с высотой уменьшается быстрее.

Азот – основной компонент воздуха (78,084 % по объему и 75,5 % по массе) и один из самых распространённых элементов на Земле.

Азот является химическим элементом, необходимым для существования животных и растений, он входит в состав белков (16-18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В составе живых клеток по числу атомов азота около 2 %, по массовой доле – около 2,5 % (четвёртое место после водорода, углерода и кислорода).

Как простое вещество представляет собой двухатомный газ без цвета, вкуса и запаха. Химически весьма инертен.

Разделяя воздух на составные компоненты, получают промышленный азот. Более ¾ промышленного азота идёт на синтез аммиака, а остальная ¼ применяется в промышленности как инертная среда для множества технологических процессов. Жидкий азот используется как хладагент.

Кислород – второй по распространенности после азота компонент воздуха. В воздухе его содержится 20,9476 % по объему и 23,15 % по массе. Вместе с азотом эти два газа образуют порядка 99% всего атмосферного воздуха.

С начала кембрийского периода (кембрия) – 540 миллионов лет назад – содержание кислорода в воздухе колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

В дальнейшем содержание кислорода в воздухе уменьшилось до современных объемов и стабилизировалось.

Кроме того, кислород – это также самый распространённый в земной коре элемент, на его долю (в составе более 1500 соединений различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода – 85,82 % (по массе).

Кислород – химически активный неметалл. Как простое вещество при нормальных условиях представляет собой газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (химическая формула O2).

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. Он входит в состав белков, жиров, углеводов, аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. По числу атомов в живых клетках он составляет около 25 %, по массовой доле – около 65 %.

Биологическая роль кислорода заключается в том, что большинство живых организмов дышат кислородом. Молекулярный кислород используется живыми организмами для процессов синтеза энергии.

Переход кислорода из атмосферного воздуха в кровь и из крови в ткани зависит от разницы в его парциальном давлении, поэтому биологическое значение имеет парциальное давление кислорода, а не процентное содержание его в воздухе. На уровне моря парциальное давление кислорода равно 160 мм. При снижении его до 140 мм у человека появляются первые признаки гипоксии. Снижение парциального давления до 50-60 мм опасно для жизни.

Кислород постоянно пополняется в атмосфере Земли путем его фотосинтеза растениями, цианобактериями и зелеными водорослями. По некоторым оценкам, зеленые водоросли и цианобактерии в морской среде обеспечивают около 70% свободного кислорода, вырабатываемого на Земле, а остальная часть производится наземными растениями и деревьями.

Аргон – третий по распространенности после азота и кислорода компонент воздуха. В воздухе его содержится 0,934 % по объему и 1,292 % по массе.

Простое вещество аргон – инертный одноатомный газ без цвета, вкуса и запаха. Химически инертен.

Аргон не играет никакой заметной биологической роли. Вместе с тем вдыхание аргона может быть опасно для здоровья, в связи с тем, что в лёгкие не попадает кислород.

Углекислый газ (диоксид углерода, двуокись углерода) – бесцветный газ (в нормальных условиях), почти без запаха (в больших концентрациях с кисловатым «содовым» запахом – запахом газированной воды). Концентрация углекислого газа в атмосфере 0,0314 % по объему и 0,046 % по массе. Тяжелее воздуха приблизительно в 1,5 раза.

Углекислый газ легко пропускает излучение в ультрафиолетовой и видимой частях спектра, которое поступает на Землю от Солнца и обогревает её. В то же время он поглощает испускаемое Землёй инфракрасное излучение и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Углекислый газ образуется в качестве одного из конечных продуктов метаболизма в клетках тканей живых организмов. Далее углекислый газ переносится от тканей по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Организм человека выделяет приблизительно 1 кг углекислого газа в сутки.

Углекислый газ участвует в процессах фотосинтеза. Поэтому с марта по сентябрь вследствие фотосинтеза содержание СО2 в атмосфере падает, а с октября по февраль – повышается.

Углекислый газ нетоксичен. Но при вдыхании его повышенных концентраций в воздухе по воздействию на воздуходышащие живые организмы его относят к удушающим газам. По ГОСТу 8050-85 углекислота относится к 4-му классу опасности.

Углекислый газ – возбудитель дыхательного центра. При его концентрации в воздухе 0,5% и выше отмечается увеличение легочной вентиляции. Незначительные повышения концентрации, вплоть до 2-4 %, в помещениях приводят к развитию у людей сонливости и слабости. Опасными для здоровья концентрациями считаются концентрации около 7-10 %, при которых развиваются симптомы удушья, проявляющиеся в виде головной боли, головокружения, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), эти симптомы развиваются, в зависимости от концентрации, в течение времени от нескольких минут до одного часа. При вдыхании воздуха с очень высокими концентрациями углекислого газа, несмотря на большую концентрацию кислорода в воздухе, смерть наступает очень быстро от удушья, вызванного гипоксией.

Неон – инертный одноатомный газ без цвета и запаха. Концентрация неона в воздухе 0,001818 % по объему и 0,0014 % по массе.

Заметной биологической роли не играет. Вместе с тем вдыхание неона может быть опасно для здоровья, в связи с тем, что в лёгкие не попадает кислород.

Неон наряду с гелием в составе неоно-гелиевой смеси используется для дыхания океанавтов, водолазов, людей, работающих при повышенных давлениях, чтобы избежать газовой эмболии и азотного наркоза. Преимущество смеси в том, что она меньше охлаждает организм, так как теплопроводность неона меньше, чем гелия.

Метан – простейший по составу предельный углеводород, при нормальных условиях бесцветный газ без вкуса и запаха.

Концентрация метана в воздухе 0,0002 % по объему и 0,000084 % по массе. Метан почти в два раза легче воздуха.

Метан в смеси с воздухом или кислородом горюч и взрывоопасен.

Метан является парниковым газом, более сильным в этом отношении, чем углекислый газ. Его вклад в парниковый эффект составляет 4-9 %. Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность того же молярного объёма метана составит 21-25 единиц.

Метан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Гелий – инертный одноатомный газ без цвета, вкуса и запаха.

Концентрация гелия в воздухе 0,000524 % по объему и 0,000073 % по массе.

Гелий не несёт какой-либо биологической функции. Вместе с тем вдыхание гелия может быть опасно для здоровья, в связи с тем, что в лёгкие не попадает кислород.

Криптон – инертный одноатомный газ без цвета, вкуса и запаха.

Концентрация криптона в воздухе 0,000114 % по объему и 0,0003 % по массе.

Криптон не несёт какой-либо биологической функции. Вместе с тем вдыхание криптона может быть опасно для здоровья, в связи с тем, что в лёгкие не попадает кислород.

Водород – самый лёгкий из элементов периодической таблицы химических элементов Д.И. Менделеева. Концентрация водорода в воздухе 0,00005 % по объему и 0,00008 % по массе.

При стандартных температуре и давлении водород – бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ с химической формулой H2, который в смеси с воздухом или кислородом горюч и взрывоопасен.

В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений. Лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере.

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках, где по числу атомов на водород приходится почти 63 %.

Поэтому значение водорода в химических процессах, происходящих на Земле и в живых организмах, почти так же велико, как и кислорода.

Будучи компонентом воздуха водород (как компонент воздуха) заметной биологической роли не играет.Ксенон – инертный одноатомный газ без цвета, вкуса и запаха.

Концентрация ксенона в воздухе 0,0000087 % по объему и 0,00004 % по массе.

Ксенон не несёт какой-либо биологической функции. Вместе с тем вдыхание ксенона может быть опасно для здоровья, в связи с тем, что в лёгкие не попадает кислород.

Водяной пар – один из компонентов воздуха. Его концентрация значительно варьируется от примерно 0,0001 % по объему в самых холодных частях атмосферы до 5% по объему в горячих, влажных воздушных массах (в пересчете на сухой воздух). Водяной пар составляет около 0,25% по массе от массы всей атмосферы.

Концентрация водяного пара в воздухе зависит от температуры, влажности, времени года и климата. Так, при температуре 0 °C 1 м³ воздуха может содержать максимально 5 г воды, а при температуре +10 °C – уже 10 г.

Вода (оксид водорода) – это бинарное неорганическое соединение с химической формулой H2O. Молекула воды состоит из двух атомов водорода и одного – кислорода, которые соединены между собой ковалентной связью. При нормальных условиях вода представляет собой прозрачную жидкость, не имеющую цвета (при малой толщине слоя), запаха и вкуса. В твёрдом состоянии вода называется льдом (кристаллы льда могут образовывать снег или иней), а в газообразном – водяным паром.

Физические свойства воздуха:

Наименование параметра Значение
Цвет бесцветный
Вкус без вкуса
Запах без запаха
Прозрачность полностью прозрачен
Средняя молярная масса (средняя масса одного моля вещества), г/моль 28,98
Плотность сухого воздуха при нормальном атмосферном давлении (101 325 Па или 1 атм.), кг/м3 1,29
Плотность сухого воздуха при нормальном атмосферном давлении (101 325 Па или 1 атм.), г/см3 0,00129
Температура кипения воздуха при нормальном атмосферном давлении, оС -192
Температура плавления воздуха при нормальном атмосферном давлении, оС -213
Средняя удельная теплоемкость при постоянном давлении (101 325 Па или 1 атм.), кДж / (кг·К) 1,006
Средняя удельная теплоемкость при постоянном объеме (при нормальном атмосферном давлении), кДж/(кг·К) 0,717
Показатель адиабаты воздуха (отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме) (при нормальном атмосферном давлении) 1,40
Теплопроводность воздуха при 0 ℃ и нормальном атмосферном давлении, Вт / (м·К) 0,0243
Скорость звука в воздухе при нормальных условиях, м/с (км/ч) 331 (1193)
Средний коэффициент теплового расширения воздуха в интервале температур 0-100°C (изменение объема при постепенном увеличении температуры при постоянном нормальном атмосферном давлении), 1/К 3,67·10−3
Коэффициент динамической вязкости воздуха при нормальных условиях и нормальном атмосферном давлении (динамическая вязкость – внутреннее сопротивление молекул движению внутри вещества согласно закону Ньютона), мкПа·с 17,2
Растворимость воздуха в воде, см3/л 29,18
Показатель преломления воздуха при нормальных условиях и нормальном атмосферном давлении (показатель преломления означает изменение угла движения световых и любых других волн в веществе) 1,0002926
Коэффициент изменения показателя преломления (при нормальных условиях и нормальном атмосферном давлении), 1/Pa 2,8·10−9
Средняя поляризуемость молекулы (при нормальных условиях и нормальном атмосферном давлении) 1,7·10−30

О сжатом воздухе

Сжатый воздух на сегодняшний день является важнейшим и незаменимым источником энергии для промышленных предприятий, сравнимым по важности разве что с электричеством.

В данной статье мы подробно расскажем о том, что же такое сжатый воздух, какие он имеет особенности и характеристики при сжатии, и как следует с ним обращаться в рамках рабочего процесса.

По своей сути, сжатый воздух представляет собой воздух под давлением, которое превышает атмосферное, то есть сжатый атмосферный воздух. Состав атмосферного воздуха известен, это сочетание следующих газов:

  • азот в концентрации около 78%;
  • кислород в концентрации около 21%;
  • остальные газы в общем соотношении около 1%.

Основными параметрами описания состояния воздуха являются следующие:

  • давление (bar);
  • температура (°C);
  • удельный объем (л. или м3).

Последний параметр (удельный объем) обычно используется для расчета объема ресивера или расхода сжатого воздуха компрессором.

В процессе сжатия воздух проходит следующие этапы:

  • Атмосфера;
  • Компрессор;
  • Пневмомагистраль;
  • Потребитель.

Основной процесс сжатия воздуха происходит в компрессоре, после него по пневмомагистрали сжатый воздух поступает к потребителю. Для задач сжатия воздуха наибольшее распространение получили поршневые, винтовые и турбокомпрессоры.

Далее посмотрим, как меняются параметры воздуха в процессе сжатия.

Температура

После всасывания воздуха в компрессор, он начинает сжиматься. При сжатии воздуха в компрессоре температура может повыситься до 180 градусов, но после попадания в ресивер, температура снижается примерно до 40 градусов. В течение процесса понижения температуры начинает образовываться конденсат, то есть выпадение влаги.

Особенности сжатия воздуха:

  • в процессе сжатия воздуха его температура всегда повышается, поскольку молекулы начинают двигаться быстрее, и выделяется тепло, при этом существует прямая зависимость повышения температуры от степени сжатия. Другими словами, чем сильнее мы сжимаем воздух, тем больше становится его температура. Это справедливо и для небольших величин давления.
  • пары воды также сжимаются и впоследствии конденсируются
  • конденсат представляет собой загрязнение, аккумулирующее в себе частицы пыли, масла, окалины и т.д.
  • Конденсат и прочие загрязнения необходимо удалять, иначе они могут повредить пневмосистеме, являясь причиной коррозии, повышенного износа и поломки.

Состав сжатого воздуха

Поступающий в компрессор воздух может содержать до 2 миллиардов частиц пыли, что уже является загрязнением в виде твердых частиц. Далее к ним прибавляется влага, масляные пары и частицы углерода. Масляный туман может повредить компрессор во время работа, а если мы эксплуатируем компрессор в условиях медицинского, фармацевтического производства или при производстве продуктов питания, вредные вещества могут попасть в организм человека или в продукты. Масляный туман сложно отделить от основного потока воздуха. Соответственно, для предотвращения износа оборудования и обеспечения его долгосрочной работы, воздух необходимо очищать. Кроме того, важным моментом является обеспечение соответствия качества сжатого воздуха нормам и стандартам DIN ISO 8573-1:2001 или ГОСТ 17433-80.

Очистка сжатого воздуха

Для соответствия высоким требованиям к сжатому воздуху, предъявляемым современными производствами, и, как следствие, к продукту, необходимо использовать комплексные системы подготовки и очистки воздуха.
В последнее время производство качественного сжатого воздуха приобрело особое значение, так как современная промышленность предъявляет высокие требования к оборудованию, а потребитель — к качеству выпускаемой продукции.

В связи с этим существуют комплексные системы подготовки и очистки сжатого воздуха. Например, для удаления влаги применяются охладители воздуха, которые способствуют выпадению конденсата путем охлаждения воздуха примерно до 10 градусов относительно температуры окружающей среды. Далее используются осушители воздуха для получения сжатого воздуха с требуемым содержанием влаги (точкой росы). Чтобы удалить примеси и загрязнения, например пыль, окалину, ржавчину, масляные пары необходимо использовать фильтры очистки.

Преимущества использования сжатого воздуха

  • Безопасность – по сравнению с электричеством, куда более безопасным является использование сжатого воздуха. В этом случае исключены перегрузки, поражение током, возгорание и прочий ущерб, особенно при работе в условиях повышенной влажности.
  • Удобство применения – проще использовать на удаленных строительных объектах, буровых установках, шахтах. Важными особенностями является возможность работы с переменной частотой и крутящим моментом.
  • Меньший вес и эргономичность – удобство работы, снижение утомляемости персонала и расходов на эксплуатацию.
  • Стоимость – по последним подсчетам, стоимость электричества ниже, чем стоимость сжатого воздуха, но само оборудование для получения сжатого воздуха стоит существенно дешевле, при этом отличается простотой конструкции и большей долговечностью.
  • Сжатый воздух является отличной универсальной, гибкой и безопасной средой для хранения и передачи энергии. Учитывая все возрастающее потребление сжатого воздуха в промышленности, стоит заметить, что правильное использование указанных выше средств подготовки и очистки воздуха позволит длительно эксплуатировать вашу пневмосистему и избежать поломок и выхода из строя.

Сжатый воздух — Compressed air

Сжатый воздух воздух хранится под давлением , которое больше , чем атмосферное давление. Сжатый воздух является важным средством для передачи энергии в промышленных процессах. Сжатый воздух используется для электрических инструментов , таких как воздушные молотки, дрели, гаечные ключи и другие. Сжатый воздух используется для распыления краски, чтобы работать воздушные баллоны для автоматизации, а также может использоваться для приведения в движение транспортных средств. Тормоза , применяемые при помощи сжатого воздуха из крупных железнодорожных поездов безопаснее и эффективнее работать. Пневматические тормоза также находятся на больших автодорожных транспортных средств.

Сжатый воздух используется в качестве дыхательного газа по подводным . Это может быть осуществлено с помощью водолаза в высоком давлении водолазного цилиндра , или подают с поверхности при более низком давлении через линию воздуха или пуповинный водолаз . Аналогичные механизмы используются в дыхательных аппаратах , используемых пожарными, работники горноспасательных и промышленными рабочими в опасных средах.

В Европе 10 процентов всего промышленного потребления электроэнергии для производства сжатого воздуха- на общую сумму 80 тераватт часов потребления в год.

Сжатый воздух как он есть…

04 Апреля 2012

В современном высокотехнологическом мире сжатый воздух незаменим, он используется повсеместно и на сегодняшний день является вторым по важности источником энергии после электричества для очень многих промышленных предприятий.

Что же представляет из себя сжатый воздух? Какие существуют принципы и особенности сжатия воздуха, и что следует помнить при работе с ним?

Начнем с определения: сжатый воздух – это воздух, который находится под давлением, превышающим атмосферное. По сути, сжатый воздух – это сжатый атмосферный воздух, то есть тот воздух, которым мы дышим, который состоит из различных газов:

— 78% азот

— 21% кислород

— 1% другие газы.

Состояние воздуха (газа) можно описать тремя параметрами:

— давление (Р);

— температура (С);

— удельный объем (Vуд.);

В технологии сжатия воздуха все три параметра измеряются в конкретных величинах:

— рабочее давление (давление сжатия) измеряется в барах;

— температура сжатого воздуха измеряется в градусах Цельсия;

— объем используют как для определения размеров ресивера, так и для расхода компрессорами сжатого воздуха, выраженный в лит./мин или куб.м./час

Одним из средств сжатия воздуха является его “выработка” компрессорным оборудованием. Таким образом, сжатый воздух начинает свой путь в компрессоре.

Прежде чем попасть к потребителю сжатый воздух проходит следующие этапы:

На каждом из этих этапов происходит своего рода трансформация воздуха из одного состояния в другое. Рассмотрим основные принципы и особенности сжатого воздуха.

Температура.

В процессе поступления воздуха из атмосферы в компрессор воздух начинает сжиматься. В момент сжатия воздуха в компрессоре его температура может достигать до 180 С, однако через какое-то время, когда воздух попадает дальше, в ресивер, его температура начинает падать, к примеру, на “выходе” из поршневого компрессора она равняется примерно 40-45 С.

Таким образом, падение температуры сжатого воздуха “на лицо”, и воздух, действительно, остывает. В тот момент, когда его температура начинает понижаться, идет процесс возникновения конденсата или другими словами влаги. Таким образом, о сжатии воздуха важно знать следующее:

— при сжатии всегда происходит повышение температуры. Чем сильнее сжимается воздух, тем выше поднимается температура, и даже при сжатии воздуха до невысокого давления происходит значительное возрастание температуры.

— повышение температуры происходит не из-за механического трения частей компрессора и тому подобного, а из-за самого сжатия.

— водяные пары также сжимаются, и при последующем понижении температуры — конденсируются.

— при сжатии воздуха пары воды становятся основным загрязнением.

— в сжатом воздухе сконденсировавшаяся вода является загрязнением, которое улавливает и переносит другие загрязнения.

— концентрация вредных веществ возрастает, и может стать опасной, если их не удалить.

Самое главное – то, что в итоге сжатия воздуха после падения температуры воздуха возникает конденсат, и это может стать настоящей проблемой для потребителя.

Значительное содержание воды в сжатом воздухе становится причиной коррозии пневмосети. Взвешенные частицы и ржавчина действуют как абразив на элементы пневмоавтоматики. Всё это приводит к серьезным повреждениям пневматического оборудования, тем самым вызывая простои оборудования, повышение эксплуатационных расходов и повреждение производимых изделий.

Состав сжатого воздуха.

При подаче в компрессор обычный воздух содержит около 1,8 миллиардов частиц пыли. Таким образом, воздух, попадающий в компрессор, уже содержит загрязнения в виде твердых частиц. К этому надо добавить и то, что мы уже выяснили – некоторое количество влаги или водяного пара, который при сжатии конденсируется, тоже образует загрязнение воздуха. Но и это еще не все: в процессе работы маслянных компресоров в воздушный поток (в результате нагревания масла) могут попадать масляные пары и образовавшийся углерод.

Масляный туман или пар, исходящий из потока сжатого воздуха, может стать причиной сбоя в работе компрессора, сколов краски от корпуса либо появления отверстий (пробоин) на нем. При эксплуатации компрессора в пищевой отрасли либо в медицинской сфере существует риск попадания вредных веществ в организм человека. Масляный туман является наиболее трудновыводимым элементом при его отделении от воздушного потока.

Все это в целом приводит к тому, что загрязнения в атмосферном воздухе с наличием водяных паров и масляного тумана, в процессе работы компрессора превращаются в 2 миллиарда частиц пыли и 0,03 мг/м.куб. масляных паров в выходном воздушном потоке.

Попадая в пневматическую систему, такая агрессивная смесь приводит к ускоренному износу оборудования и выходу его из строя.

Поэтому встает вопрос о качестве воздуха, которое определяется содержанием частиц пыли, масляного тумана и водяных паров. Требование к качеству сжатого воздуха определяет производитель оборудования и нормируется по DIN ISO 8573-1:2001 или ГОСТ 17433-80. Существуют следующие стандарты ISO для типов сжатого воздуха:

Очистка сжатого воздуха.

В последнее время производство качественного сжатого воздуха приобрело особое значение, так как современная промышленность предъявляет высокие требования к оборудованию, а потребитель — к качеству выпускаемой продукции. В связи с этим существуют комплексные системы подготовки и очистки сжатого воздуха. Если коротко остановится на основных этапах, то они выглядят так.

Для принудительного удаления влаги из сжатого воздуха на первом этапе применяют охладители воздуха, которые охлаждают горячий, содержащий влагу воздух до температуры +10 С по отношению к температуре окружающей среды. В результате резкого охлаждения происходит процесс конденсации. На выходе из охладителя сжатый воздух содержит влагу в виде взвеси капелек воды – водяного конденсата и пара. На следующем этапе получения сжатого воздуха с необходимой точкой росы (содержанием влаги) используются осушители сжатого воздуха.

Для удаления содержащихся в сжатом воздухе других посторонних примесей (песок, пыль, частицы метала от трущихся элементов компрессора, продукты окисления пневматической магистрали, пары масел и т. п.), применяются магистральные фильтры.

Таким образом, какими бы ни были требования по чистоте воздуха, современные системы подготовки и очистки воздуха позволяют эффективно подготовить и очистить воздух до необходимого уровня.

DIN ISO 8573-1:2001 Качество сжатого воздуха

Стандарт качества сжатого воздуха для каждой категории применения

Применение Класс качества
Грязь Вода Масло
Фотография 1 1 1
Продукты питания/напитки 2 3 1
Пневмоцилиндр 3 3 3
Воздух для общего приминения 4 4 5

Пневмомагазин.ру

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *