Диполь в неоднородном электрическом поле

Диполь в однородном и неоднородном электрических полях

⇐ ПредыдущаяСтр 24 из 55

Если диполь поместить в однородное электрическое поле, образующие диполь заряды +q и –q окажутся под действием равных по величине, но противоположных по направлению сил и .

Рис. 14.2.

Эти силы образуют пару, плечо которой равно l·sina, т.е. зависит от ориентации диполя относительно поля. Модуль каждой из сил равен q×E. Умножив его на плечо, получим величину момента пары сил, действующей на диполь:

, (14.1)

где р – электрический момент диполя.

Формулу (14.1) можно записать в векторном виде:

. (14.2)

Вращающий момент стремится повернуть диполь так, чтобы его дипольный момент установился по направлению поля.

Чтобы увеличить угол между векторами и на 2a, нужно совершить против работу сил, действующих на диполь в электрическом поле:

Эта работа идет на увеличение потенциальной энергии W, которой обладает диполь в электрическом поле:

. (14.3)

Интегрируя (14.3) получим выражение для энергии диполя в электрическом поле:

Наконец, полагая const равной нулю, получаем

. (14.4)

Выбор Сonst=0соответствует положению диполя перпендикулярно полю. Наименьшее значение энергии, равное –рЕ, получается при ориентации диполя по направлению поля, наибольшее, равное рЕ, — при ориентации против поля.

В неоднородном поле силы, действующие на заряды диполя, не одинаковые по величине. При малых размерах диполя силы и можно считать коллинеарными. Предположим, что поле быстрее всего изменяется в направлении х, совпадающем с направлением в том месте, где расположен диполь. Положительный заряд диполя смещен относительно отрицательного в направлении х на величину .

Рис. 14.3.

Поэтому напряженность поля в точках, где помещаются заряды, отличается на .


Следовательно, результирующая + сил, действующих на диполь, будет отлична от нуля. Проекция этой результирующей на ось х, очевидно равна:

. (14.5)

Таким образом, в неоднородном поле на диполь кроме вращательного момента (14.2) действует сила (14.5), под действием которой диполь либо втягивается в область более сильного поля (угол a острый), либо выталкивается из нее (угол a тупой).

Поляризация диэлектриков

В отсутствии внешнего электрического поля дипольные моменты молекул диэлектрика или равны нулю (неполярные молекулы), или распределены по направлениям в пространстве хаотическим образом (полярные молекулы). В обоих случаях суммарный электрический момент диэлектрика равен нулю. Под действием внешнего поля диэлектрик поляризуется. Результирующий электрический момент единицы объема характеризует степень поляризации диэлектрика. Если поле или диэлектрик неоднородны, степень поляризации в разных точках диэлектрика будет различна. Чтобы охарактеризовать поляризацию в данной точке, нужно выделить заключающий в себе эту точку физически бесконечно малый объем , найти сумму моментов, заключенных в этом объеме молекул, и взять отношение

, (14.6)

Р – вектор поляризации диэлектрика.

У диэлектриков любого типа (кроме сегнетоэлектриков) вектор поляризации связан с напряженностью поля в той же точке простым соотношением:

, (14.7)

где c — диэлектрическая восприимчивость.

Для диэлектриков, построенных из неполярных молекул, формула (13.7) вытекает из следующих простых соображений. В пределы объема попадает количество молекул, равное , где n – число молекул в единице объема.

Разделив это выражение на , получим вектор поляризации .

Отсюда следует, что .

Под напряженностью поля в диэлектрике понимают значение , получающееся усреднением истинного поля по физически бесконечно малому объему.

Поле получается в результате наложения двух полей: поля , создаваемого свободными зарядами, т.е. такими зарядами, которые могут передаваться от одного тела к другому при их касании, и поля связанных зарядов. В силу принципа суперпозиции полей:

. (14.8)

Связанные заряды отличаются от свободных лишь тем, что не могут покинуть пределы молекулы (или атома), в состав которой они входят. В остальном их свойства таковы, как и у всех прочих зарядов. В частности, на связанных зарядах начинаются или заканчиваются линий вектора . Поэтому теорему Гаусса для определяемого выражением (1) вектора нужно записать в виде:

. (14.9)

В это выражение входит сумма связанных зарядов не известная нам. Но можно выразить сумму связанных зарядов через поток вектора поляризации:

. (14.10)

Объединив (14.9) и (14.10) получим:

. (14.11)

Выражение в скобках называют электрическим смещением или электрической индукцией и обозначают буквой .

. (14.12)

С использованием этой величины формула (14.11) может быть записана в виде:

. (14.13)

Эта формула выражает теорему Гаусса для вектора электрического смещения: поток вектора электрического смещения через замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных зарядов.

Подставив в формулу (14.12) выражение для , получим:

Электрический диполь в однородном и неоднородном поле

Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + … +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

где – электрическая постоянная.

В системе СИ элементарный заряд e равен:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Рисунок 1.1.4. Принцип суперпозиции электростатических сил

Принцип суперпозиции является фундаментальным законом природы. Однако его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Теорема Гауса.

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS. Произведение модуля вектора на площадь ΔS и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 1.3.1):

ΔΦ = E ΔS cosα = En ΔS,

где En – модуль нормальной составляющей поля .

Рисунок 1.3.1.

К определению элементарного потока ΔΦ . Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки ΔΦi поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 1.3.2):

В случае замкнутой поверхности всегда выбирается внешняя нормаль. Рисунок 1.3.2.

Вычисление потока Ф через произвольную замкнутую поверхность S

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

Для доказательства рассмотрим сначала сферическую поверхность S, в центре которой находится точечный заряд q. Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю

где R – радиус сферы. Поток Φ через сферическую поверхность будет равен произведению E на площадь сферы 4πR2. Следовательно,

Окружим теперь точечный заряд произвольной замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R0 (рис. 1.3.3).

Рисунок 1.3.3.

Поток электрического поля точечного заряда через произвольную поверхность S, окружающую заряд
Рассмотрим конус с малым телеснымуглом ΔΩ при вершине. Этот конус выделит на сфере малую площадку ΔS0, а на поверхности S – площадку ΔS. Элементарные потоки ΔΦ0 и ΔΦ через эти площадки одинаковы. Действительно, ΔΦ0 = E0ΔS0, ΔΦ = EΔS cos α = EΔS ‘.

Здесь ΔS’ = ΔS cos α – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса n.

Так как ,а ,следовательно

Отсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ0 через поверхность вспомогательной сферы:

Аналогичным образом можно показать, что, если замкнутая поверхность S не охватывает точечного заряда q, то поток Φ = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φi электрических полей отдельных зарядов. Если заряд qi оказался внутри поверхности S, то он дает вклад в поток, равный если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R. Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l, закрытого с обоих торцов (рис. 1.3.4).

Рисунок 1.3.4.

Вычисление поля однородно заряженного цилиндра. OO’ – ось симметрии
При r ≥ R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl, так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

где τ – заряд единицы длины цилиндра. Отсюда

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая r < R. В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен Φ = E 2πrl. Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

Рисунок 1.3.5.

Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность
В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда, т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Электрический диполь в однородном и неоднородном поле.

Поле электрического диполя.

Диполь в однородном и неоднородном

⇐ ПредыдущаяСтр 11 из 25

Электрических полях

Рассмотрим поведение диполя в однородном поле, напряженность которого (рис.2.3). На заряды диполя действуют равные по величине, но противоположные по направлению силы и . Модуль каждой из сил равен . Эти силы создают момент силы. Умножив его на плечо, получим величину момента сил, действующих на диполь

. (2.4)

Формула (2.4) может быть записана в векторном виде:

. (2.5)

Момент сил (2.5) стремится повернуть диполь так, чтобы его электрический момент установился по направлению поля.

Диполь в поле обладает энергией, значение которой можно найти по формуле:

(2.6)

Здесь и — значения потенциала внешнего поля в тех точках, где помещаются заряды и .

Потенциал однородного поля уменьшается равномерно в направлении вектора . Приняв это направление за ось ОХ (рис.2.4), используя (1.6), можно записать .

Из рис.2.4 видно, что разность равна приращению потенциала на отрезке :

. (2.7)

Подставив (2.7) в формулу (2.6), получим:

, (2.8)

где — угол между векторами и , поэтому (2.8) можно записать в виде:

. (2.9)

Выражение для энергии (2.9) остается справедливым и для неоднородного поля.

Рассмотрим состояние диполя в неоднородном поле. Пусть электрическое поле нарастает вдоль оси ОХ (рис.2.5).

Рис.2.5. Диполь в неоднородном поле

Если угол между векторами и равен нулю (положение 1), то под действием пары сил диполь будет втягиваться в область поля с большей напряженностью .

При начальном угле (положение 2) пара сил, действующих на заряды диполя, будет приводить к его вращению с уменьшением угла и втягиванию в область более сильного поля, т.е. к поступательному движению вдоль оси ОХ. При начальном угле диполь будет сначала поворачиваться с уменьшением угла и выталкиваться в область более слабого поля. При достижении угла он поворачивается с уменьшением угла и начинает втягиваться в область более сильного поля.

О

Можно записать формулу для проекции на ось ОХ силы , вызывающей поступательное движение диполя, используя известное из механики выражение, связывающее консервативную силу и потенциальную энергию:

Итак, при любом начальном угле диполь в неоднородном электрическом поле в итоге втягивается в область более сильного поля. Такое поведение диполя используется в пылеулавливателях: в какой-либо части трубы, из которой выходит дым (это могут быть, например, побочные газообразные продукты горения на тепловых электростанциях, металлургических предприятий), создается неоднородное электрическое поле; частицы дыма (диполи) втягиваются в область более сильного поля и не попадают в атмосферу, не загрязняют окружающую среду.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *