Механические свойства биологических тканей

21. Механические свойства биологических тканей

Под механическими свойствами биологических тканей понимают две их разновидности. Одна связана с процессами биологической подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечиваются АТФ, их природа рассматривается в курсе биохимии. Условно указанную группу называют активными механическими свойствами биологических систем.

Костная ткань. Кость – основной материал опорно-двигательного аппарата. Две трети массы компактной костной ткани (0,5 объема) составляет неорганический материал, минеральное вещество кости – гидроксилантит 3 Са3(РО) х Са(ОН)2. Это вещество представлено в форме микроскопических кристалликов.

Плотность костной ткани равна 2400 кг/м3, ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма. Строение кости придает ей нужные механические свойства: твердость, упругость и прочность.

Кожа. Она состоит из волокон коллагена и эластина и основной ткани – матрицы. Коллаген составляет около 75 % сухой массы, а эластин – около 4 %. Эластин растягивается очень сильно (до 200–300 %), примерно как резина. Коллаген может растягиваться до 10 %, что соответствует капроновому волокну.

Таким образом, кожа является вязкоупругим материалом с высокоэластическими свойствами, она хорошо растягивается и удлиняется.

Мышцы. В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров. Механическое поведение скелетной мышцы следующее: при быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается. При большей деформации происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2: 1, а в бедренной артерии – 1: 2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.

При детальном исследовании механических свойств сосудистой ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно рассматривать деформацию сосуда в целом как результат действия давления изнутри на упругий цилиндр. Две половины цилиндрического сосуда взаимодействуют между собой по сечениям стенок цилиндра. Общая площадь этого сечения взаимодействия равна 2hl. Если в сосудистой стенке существует механическое напряжение s, то сила взаимодействия двух половинок сосуда равна:

Механические свойства биологических тканей

Под механическими свойствами биологических тканей понимают две их разновидности. Одна связана с процессами биологической подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечиваются АТФ, их природа рассматривается в курсе биохимии. Условно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность — пассивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям.

Как технический объект биологическая ткань — композиционный материал, он образован объемным сочетанием химически разнородных компонентов. Механические свойства биологической ткани отличаются от механических свойств каждого компонента, взятого в отдельности. Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов.

Костная ткань.Кость — основной материал опорно-двигательного аппарата. В упрощенном виде можно считать, что 2/3 массы компактной костной ткани (0,5 объема) составляет неорганический материал, минеральное вещество кости — гидроксилапатит ЗСа3(РО4)2 • Са(ОН)2. Это вещество представлено в форме микроскопических кристалликов. В остальном кость состоит из органического материала, главным образом коллагена (высокомолекулярное соединение, волокнистый белок, обладающий высокой эластичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).

Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма.

Композиционное строение кости придает ей нужные механические свойства: твердость, упругость и прочность. Зависимость для компактной костной ткани имеет характерный вид, показанный на рис. а,

а) б)

т.е. подобна аналогичной зависимости для твердого тела; при небольших деформациях выполняется закон Гука. Модуль Юнга около 10 ГПа, предел прочности 100 МПа. Заметно хорошее соответствие с данными для капрона, армированного стеклом.

Примерный вид кривых ползучести компактной костной ткани приведен на рис. б). Участок 0А соответствует быстрой деформации, АВ — ползучести. В момент tv соответствующий точке В, нагрузка была снята. ВС соответствует быстрой деформации сокращения, CD — обратной ползучести. В результате даже за длительный период образец кости не восстанавливает своих прежних размеров, сохраняется некоторая остаточная деформация eост.

Схематично можно заключить, что минеральное содержимое кости обеспечивает быструю деформацию, а полимерная часть (коллаген) определяет ползучесть.

Если в кости или в ее механической модели быстро создать постоянную деформацию, то скачкообразно возникает и напряжение.

Кожа.Она состоит из волокон коллагена и эластина (так же как и коллаген, волокнистый белок) и основной ткани — матрицы. Коллаген составляет около 75% сухой массы, а эластин — около 4%. Примерные данные по механическим свойствам приведены в табл.

Эластин растягивается очень сильно (до 200—300%), примерно как резина. Коллаген может растягиваться до 10%, что соответствует капроновому волокну.

Таблица

Материал Модуль упругости, МПа Предел прочности, МПа
Коллаген Эластин 10—100 0,1—0,6

Из сказанного ясно, что кожа является вязкоупругим материалом с высокоэластическими свойствами, она хорошо растягивается и удлиняется.

Мышцы.В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.

Гладкие мышцы могут значительно растягиваться без особого напряжения, что способствует увеличению объема полых органов, например мочевого пузыря. У скелетных мышц при быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается до sост Зависимость s=f(e) для скелетной мышцы нелинейна. Анализ этой зависимости показывает, что примерно до e~ 0,25 в портняжной мышце лягушки механизм деформации обусловлен распрямлением молекул коллагена. При большей деформации происходит увеличение межатомных расстояний в молекулах.

Под механическими свойствами биологических тканей пони­мают две их разновидности. Одна связана с процессами биологи­ческой подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечи­ваются АТФ, их природа рассматривается в курсе биохимии. Ус­ловно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность — пас­сивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям.

Как технический объект биологическая ткань — композици­онной материал, он образован объемным сочетанием химически разнородных компонентов. Механические свойства биологиче­ской ткани отличаются от механических свойств каждого компо­нента, взятого в отдельности. Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов.

Костная ткань. Кость — основной материал опорно-двига­тельного аппарата. В упрощенном виде можно считать, что 2/3 мас­сы компактной костной ткани (0,5 объема) составляет неорганиче­ский материал, минеральное вещество кости — гидроксилапатит ЗСа3(РО4)2 • Са(ОН)2. Это вещество представлено в форме микро­скопических кристалликов. В остальном кость состоит из органи­ческого материала, главным образом коллагена (высокомолеку­лярное соединение, волокнистый белок, обладающий высокоэластичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).

Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуаль­ных условий роста организма и, конечно, от участка организма.

Композиционное строение кости придает ей нужные механиче­ские свойства: твердость, упругость и прочность. Зависимость σ = = f(ε) для компактной костной ткани имеет характерный вид, по­казанный на рис. 8.18, т. е. подобна аналогичной зависимости для твердого тела (см. рис. 8.13); при небольших деформациях выполняется закон Гука. Модуль Юнга около 10 ГПа, предел про­чности 100 МПа. Полезно эти данные сопоставить с данными для капрона, армированного стеклом (см. табл. 16, заметно хорошее соответствие).


Примерный вид кривых ползучести компактной костной тка­ни приведен на рис. 8.19. Участок 0А соответствует быстрой де-

формации, АВ — ползучести. В момент t1 соответствующий точ­ке В, нагрузка была снята. ВС соответствует быстрой деформации сокращения, CD — обратной ползучести. В результате даже за — длительный период образец кости не восстанавливает своих прежних размеров, сохраняется некоторая остаточная деформация εост.

Этой зависимости приближенно соответствует модель (рис. 8.20, а), сочетающая последовательное соединение пружины с моделью Кельвина—Фойхта. Временная зависимость относительной деформации показана на рис. 8.20, б. При действии постоян- ной нагрузки мгновенно растягивается пружина 1 (участок ОА), затем вытягивается поршень (ползучесть АВ), после прекращения нагрузки происходит быстрое сжатие пружины 1 (ВС), а пружинa 2 втягивает поршень в прежнее положение (ползучесть CD). В предложенной модели не предусматривается остаточная деформация.

Схематично можно заключить, что минеральное содержимое и кости обеспечивает быструю деформацию, а полимерная часть (коллаген) определяет ползучесть.

Если в кости или в ее механической модели быстро создать постоянную деформацию, то скачкообразно возникает и напряжение (участок ОА на рис. 8.20, в). На модели это означает растяжение пру­жины 1 и возникновение в ней напря­жения. Затем (участок АВ) эта пру­жина будет сокращаться, вытягивая поршень и растягивая пружину 2, на пряжение в системе будет убывать r (релаксация напражения). Однако даже спустя значительное время сохра­нится остаточное напряжение σост. Для модели это означает, что не возникнет при постоянной деформации такой ситуации, чтобы пружины вернулись в недеформированное состоя ние.

Кожа. Она состоит из волокон кол­лагена, эластина (так же как и колла­ген, волокнистый белок) и основной ткани — матрицы. Коллаген состав­ляет около 75% сухой массы, а эластин — около 4%. Примерные данные по механическим свойствам приведены в табл. 17.

Эластин растягивается очень сильно (до 200—300%), пример­но как резина. Коллаген может растягиваться до 10%, что соот­ветствует капроновому волокну.

Таблица 17

Материал Модуль упругости, МПа Предел прочности, МПа
Коллаген Эластин 10—100 0,1—0,6

Из сказанного ясно, что кожа является вязкоупругим материа­лом с высокоэластическими свойствами, она хорошо растягивает­ся и удлиняется.

Мышцы. В состав мышц входит соединительная ткань, со­стоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.

Релаксация напряжения в гладких мышцах соответствует модели Максвелла (см. рис. 8.15, в; 8.16, б). Поэтому гладкие мышцы могут значительно растягиваться без особого напряжения, что способствует увеличению объема полых органов, например мочевого пузыря.

Механическое поведение скелетной мышцы соответствует мо­дели, представленной на рис. 8.20, а. При быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается до σост (см. рис. 8.20, в).

Зависимость σ = f(ε) для скелетной мышцы нелинейна (рис. 8.21). Анализ этой кривой показывает, что примерно до ε ≈ 0,25 в порт­няжной мышце лягушки механизм деформации обусловлен рас­прямлением молекул коллагена (см. § 8.3). При большей деформа­ции происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механиче­ские свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Со­держание этих составляющих сосудистой ткани изменяется по хо­ду кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2:1, а в бедренной артерии 1:2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.

При детальном исследовании механических свойств сосудис­той ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно, однако, рассматривать де­формацию сосуда в целом как результат действия давления из­нутри на упругий цилиндр.

Рассмотрим цилиндрическую часть кровеносного сосуда дли­ной l, толщиной h и радиусом внутренней части r. Сечения вдоль и поперек оси цилиндра показаны на рис. 8.22, а, б. Две половины цилиндрического сосуда взаимодействуют между собой по сечени­ям стенок цилиндра (заштрихованные области на рис. 8.22, а). Общая площадь этого «сечения взаимодействия» равна 2hl. Если в сосудистой стенке существует механическое напряжение а, то си­ла взаимодействия двух половинок сосуда равна

Эта сила уравновешивается силами давления на цилиндр изнутри (они показаны стрелками на рис. 8.22, б). Силы направлены под разными углами к горизонтальной плоскости (на рисунке). Для того чтобы найти их равнодействующую, следует просуммировать горизонтальные проекции. Однако проще найти равнодействую­щую силу, если умножить давление на проекцию площади полу­цилиндра на вертикальную плоскость ОО’. Эта проекция равна 2rl. Тогда выражение для силы через давление имеет вид

Приравнивая (8.10) и (8.11), получаем σ • 2hl = р • 2rl, откуда

Это уравнение Ламе.

Будем считать, что при растяжении сосуда объем его стенки не изменяется (площадь стенки возрастает, а толщина убывает), т. е. не изменяется площадь сечения стенки сосуда (рис. 8.22, б):

С учетом (8.13) преобразуем (8.12):

Из (8.14) видно, что в капиллярах (r→ 0) напряжение отсутст­вует (σ → 0).

В заключение отметим разделы и направления медицины, для которых особо важно иметь представление о пассивных механиче­ских свойствах биологических тканей:

— — — в космической медицине, так как человек находится в но­вых, экстремальных, условиях обитания;

— — — в спортивной медицине результативность достижений и ее возрастание побуждают портивных медиков обращать внимание на изические возможности опорно-двигательного аппарата человека; механические свойства тканей необходимо учитывать гиги­енистам при защите человека от действия вибраций; в протезировании при замене естественных органов и тка­ней искусственными также важно знать механические свойства и параметры биологических объектов;

— — — в судебной медицине следует знать устойчивость биологических структур по отношению к различным деформациям;

— — — в травматологии и ортопедии вопросы механического воз­ действия на организм являются определяющими.

Этот перечень не исчерпывает значения материала, изложен­ного в настоящей главе, для врачебного образования.

ГЛАВА 9 Физические вопросы гемодинамики

Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физи­ческой основой гемодинамики является гидродинамика. Те­чение крови зависит как от свойств крови, так и от свойств кровеносных сосудов.

В главе рассматриваются также физические основы работы некоторых технических устройств, используемых в связи с кровообращением.

Модели кровообращения

Рассмотрим гидродинамическую модель кровеносной системы, предложенную О. Франком. Несмотря на достаточную простоту, она позволяет установить связь между ударным объемом крови артерии) поступает кровь из сердца, объ­емная скорость кровотока равна Q. От упругого резервуара кровь оттекает с объемной скоростью кровотока Qo в п(объем крови, выбрасываемый желу­дочком сердца за одну систолу), гид­равлическим сопротивлением перифе­рической части системы кровообраще­ния Хо и изменением давления в артериях. Артериальная часть систе­мы кровообращения моделируется упругим (эластичным) резервуаром (рис. 9.1, обозначено УР). Так как кровь находится в упругом резервуаре, то ее объем V в любой момент времени зависит от давления ρ по следующему соотношению:

где κ— эластичность, упругость резервуара (коэффициент про­порциональности между давлением и объемом), V0 — объем ре­зервуара при отсутствии давления (ρ = 0). Продифференцировав (9.1), получим

В упругий резервуар (артерии) поступает кровь из сердца, объемна скорость кровотока равна Q. Предполагаем, что гидравлическое сопротивление периферической системы постоянно. Это мо­делируется «жесткой» трубкой на выходе упругого резервуара (рис. 9.1).

Можно составить достаточно очевидное уравнение (рис. 9.1)

показывающее, что объемная скорость кровотока из сердца равна сумме скорости возрастания объема упругого резервуара и скорос­ти оттока крови из упругого резервуара.

На основании уравнения Пуазейля (7.8) и формулы (7.9) мож­но записать для периферической части системы

где р — давление в упругом резервуаре, рв — венозное давление, оно может быть принято равным нулю, тогда вместо (9.4) имеем

Q0=ρ/X0 (9.5)

Подставляя (9.2) и (9.5) в (9.3), получаем

Проинтегрируем (9.6). Пределы интегрирования по времени соот­ветствуют периоду пульса (периоду сокращения сердца) от 0 до Тп. Этим временным пределам соответствуют одинаковые давления — минимальное диастолическое давление рд :

Интеграл с равными пределами равен нулю, поэтому из (9.7) имеем

Экспериментальная кривая, показывающая временную зависи­мость давления в сонной артерии, приведена на рис. 9.2 (сплошная линия). На рисунке показан период пульса, длительности Тс сис­толы и Тд диастолы, рс — максимальное (систолическое) давление.

Интеграл в левой части уравнения (9.8) равен объему крови, который выталкивается из сердца за одно сокращение, — удар­ный объем. Он может быть найден экспериментально. Интеграл в правой части уравнения (9.8) соответствует площади фигуры, ог­раниченной кривой и осью времени (см. рис. 9.2), что также мож­но найти. Используя указанные значения интегралов, можно вы­числить по (9.8) гидравлическое сопротивление периферической части системы кровообращения.

Во время систолы (сокращение серд­ца) происходит расширение упругого резервуара, после систолы, во время ди­астолы — отток крови к периферии, Q = 0. Для этого периода из (9.6) имеем

Соответствующая кривая изображена тонкой линией на рис. 9.2. На основании (9.5) получаем зависимость объемной скорости оттока крови от времени:

где Qc= Pс/X0 объемная скорость кровотока из упругого резервуара в конце систолы (начале диастолы).

Зависимости (9.10) и (9.11) представляют собой экспоненты. Хотя данная модель весьма грубо описывает реальное явление, она чрезвычайно проста и верно отражает процесс к концу диасто­лы. Вместе с тем изменения давления в начале диастолы с по­мощью этой модели не описываются.

На основе механической модели по аналогии может быть по­строена электрическая модель (рис. 9.3).

Здесь источник U, дающий несинусоидальное переменное элект­рическое напряжение, служит аналогом сердца, выпрямитель В — сердечного клапана. Конденсатор С в течение полупериода накап­ливает заряд, а затем разряжается на резистор R, таким образом происходит сглаживание силы тока, протекающего через резистор. Действие конденсатора аналогично действию упругого резервуара (аорты, артерии), который сглаживает колебание давления крови в артериолах и капиллярах. Резистор является электрическим аналогом периферической сосудистой системы.

В более точной модели сосудистого русла использовалось боль­шее количество эластичных резервуаров для учета того факта, что сосудистое русло является системой, распределенной в простран­стве. Для учета инерционных свойств крови при построении моде­ли предполагалось, что эластичные резервуары, моделирующие восходящую и нисходящую ветви аорты, обладают различной уп­ругостью. На рис. 9.4 приведено изображение модели Ростона, со­стоящей из двух резервуаров с различными эластичностями (упругостями) и с неупругими звеньями разного гидравлического со-

противления между резервуарами. Этой модели соответствует электрическая схема, изображенная на рис. 9.5. Здесь источник тока задает пульси­рующее напряжение U(t), являющее­ся аналогом давления p(t); емкости С1 и С2 соответствуют упругостям резер­вуаров kl и k2, электрические сопро­тивления R1, R2 и R3 — гидравличе­ским сопротивлениям X1, Х2 и Х3, си-

лы тока 11 и 12 — объемным скоростям оттока крови Q1 и Q2.

Такая модель математически описывается системой двух диф­ференциальных уравнений первого порядка, их решение дает две кривые, соответствующие первой и второй камерам.

Двухкамерная модель лучше описывает процессы, происходя­щие в сосудистом русле, но и она не объясняет колебания давле­ния в начале диастолы.

Модели, содержащие несколько сотен элементов, называют мо­делями с распределенными параметрами.

Пульсовая волна

При сокращении сердечной мышцы (систола) кровь выбрасыва­ется из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к перифе­рии. Упругость стенок сосудов приводит к тому, что во время сис­толы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т. е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давле­ние человека в норме равно приблизительно 16 кПа. Во время рас­слабления сердца (диастола) растянутые кровеносные сосуды спа­дают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11 кПа.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в пе­риод систолы, называют пульсовой волной.

Пульсовая волна распространяется со скоростью 5—10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она

должна распространиться на расстоя­ние 1,5—3 м, что больше расстояния от сердца к конечностям. Это означает, что начало пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Профиль части арте­рии схематически показан на рис. 9.6: а — после прохождения пульсовой вол­ны, б — в артерии начало пульсовой волны, в — в артерии пульсовая волна, г — начинается спад повышенного дав­ления.

Д1ульсовой волне будет соответство­вать пульсирование скорости кровото­ка в крупных артериях, однако ско­рость крови (максимальное значение

0,3—0,5 м/с) существенно меньше скорости распространения пульсовой волны.

Из модельного опыта и из общих представлений о работе серд­ца ясно, что пульсовая волна не является синусоидальной (гармо­нической). Как всякий периодический процесс, пульсовая волна может быть представлена суммой гармонических волн (см. § 5.4). Поэтому уделим внимание, как некоторой модели, гармониче­ской пульсовой волне.

Предположим, что гармоническая волна распрост­раняется по сосуду вдоль оси X со скоростью v. Вязкость крови и упруговязкие свойства стенок сосуда уменьшают амплитуду вол­ны. Можно считать (см., например, § 5.1), что затухание волны будет экспоненциальным. На основании этого можно записать следующее уравнение для пульсовой волны:

где р0 — амплитуда давления в пульсовой волне; х — расстояние до произвольной точки от источника колебаний (сердца); t — вре­мя; ω — круговая частота колебаний; χ — некоторая константа, определяющая затухание волны. Длину пульсовой волны можно найти из формулы

Волна давления представляет некоторое «избыточное» давле­ние. Поэтому с учетом «основного» давления ра (атмосферное давление или давление в среде, окружающей сосуд) можно измене­ние Явления записать следующим образом:

Как видно из (9.14), по мере продвижения крови (по мере уве­личения х) колебания давления сглаживаются. Схематично на рис. 9.7 показано колебание давления в аорте вблизи сердца (а) и в артериолах (б). Графики даны в предположении модели гармо­нической пульсовой волны.

На рис. 9.8 приведены экспериментальные графики, показы­вающие изменение среднего значения давления и скорости vкр кровотока в зависимости от типа кровеносных сосудов. Гидроста­тическое давление крови не учитывается. Давление — избыточ­ное над атмосферным. Заштрихованная область соответствует ко­лебанию давления (пульсовая волна).

Скорость пульсовой волны в крупных сосудах следующим об­разом зависит от их параметров (формула Моенса—Кортевега):

где Е — модуль упругости, р — плотность вещества сосуда, h — толщина стенки сосуда, d — диаметр сосуда.

11.6. механические свойства биологических тканей

Структура материала является главным фактором, определяющим его механические свойства и характер процесса разрушения. Большинство биологических тканей являются анизотропными композитными материалами, образованными объемным сочетанием химически разнородных компонентов. Состав каждого типа ткани сформировался в процессе эволюции и зависит от функций, которые она выполняет.

Костная ткань

Кость — основной материал опорно-двигательного аппарата. Так, в скелете человека более 200 костей. Скелет является опорой тела и способствует передвижению (отсюда и произошел термин «опорно-двигательный аппарат»). У взрослого человека скелет весит около 12 кг (18\% общего веса).

В компактной костной ткани половину объема составляет неорганический материал, минеральное вещество кости — гидроксилапатит. Это вещество представлено в форме микроскопических кристалликов. Другая часть объема состоит из органического материала, главным образом коллагена (высокомолекулярное соединение, волокнистый белок, обладающий большой эластичностью). Способность кости к упругой деформации реализуется за счет минерального вещества, а ползучесть — за счет коллагена.

Кость является армированным композиционным материалом. Например, кости нижних конечностей армированы высокопрочными волокнами в окружных и спиральных перекрещивающихся направлениях.

Механические свойства костной ткани зависят от многих факторов: возраста, заболевания, индивидуальных условий роста. В норме плотность костной ткани 2400 кг/м3. Модуль Юнга Е = 1010Па, предел прочности при растяжении σпр= 100 МПа, относительная деформация достигает 1 \%.

При различных способах деформирования (нагружения) кость ведет себя по-разному. Прочность на сжатие выше, чем на растяжение или изгиб. Так, бедренная кость в продольном направлении выдерживает нагрузку 45000 Н, а при изгибе — 2500 Н.

Запас механической прочности кости весьма значителен и заметно превышает нагрузки, с которыми она встречается в обычных жизненных условиях.

Вся архитектоника костной ткани идеально соответствует опорной функции скелета, ориентация костных перекладин параллельна линиям основных напряжений, что позволяет кости выдерживать большие механические нагрузки. Так, например, в головке бедренной кости под каждую нагрузку формируется своя структура — так называемая ферма Мичелла. Все эти фермы связаны между собой и образуют сложную структуру (рис. 11.14).

Рис. 11.14. Схема расположения костных перекладин губчатого вещества в виде фермы Мичелла в верхнем эпифизе бедра

Одной из важных особенностей конструкции костей скелета является галтельность, т. е. скругление внутренних и внешних углов. Галтельность повышает прочность и снижает внутренние напряжения в местах резкого перехода.

Кости обладают различной прочностью в зависимости от функции, которую выполняют. Бедренная кость в вертикальном положении выдерживает нагрузку до 1,5 т, а большая берцовая кость до 1,8 т (это в 25—30 раз больше веса нормального человека).

Установлено, что в соответствии с выполнением физиологических задач по реализации опорных и локомоторных функций согласно распределению силовых нагрузок в костях формируются зоны разной твердости. На рис. 11.15 приведена схема топографии разнотвердостных зон в одном из поперечных сечений большеберцовой кости.

Рис. 11.15. Схема топографии разнотвердостных зон в одном из поперечных сечений большеберцовой кости

Кожа

Кожа представляет собой не только совершенный покров тела, но является сложным органом, выполняющим важные функции: поддержание гомеостаза; участие в процессе терморегуляции, регуляция общего обмена веществ в организме, секреторная функция (работа сальных и потовых желез), защита от повреждающего действия механических, физических, химических, инфекционных агентов. Она представляет собой обширное рецепторное поле, воспринимающее извне и передающее в ЦНС целый ряд ощущений. Кожа — граница раздела между телом и окружающей средой, поэтому она обладает значительной механической прочностью.

Кожа — самый крупный орган тела, важная анатомо-физиологическая часть целостного организма. При различных заболеваниях, в том числе и внутренних органов, в коже происходят те или иные изменения.

Кожу часто рассматривают как гетерогенную ткань, состоящую из трех наложенных друг на друга слоев, которые тесно связаны между собой, но четко различаются по природе, структуре, свойствам. Схематическое изображение основных трех слоев — эпидермиса, дермы, подкожной клетчатки представлено на рис. 11.16. Эпидермис покрыт сверху роговым слоем.

Рис. 11.17. Толщина слоев кожи для отдельных участков тела

Функции каждого слоя, в том числе и механические, отражают биомеханическую природу ее компонентов и их структурную организацию.

Соотношение толщины слоев на различных участках тела различно, что показано для некоторых участков на рис. 11.17.

Толщина эпидермиса L и такая механическая характеристика, как модуль упругости Юнга Е, для различных участков сильно отличаются:

лицо, туловище

L = 34—92 мкм

Е=104— 106Па

ладони

L = 500—600 мкм

Е=107Па

подошвы

L = 5000—9000 мкм

Е=108Па

Среднюю толщину эпидермиса часто принято характеризовать его поверхностной плотностью, значения которой для различных участков на теле показано на рис. 11.18.

В общий состав кожи входят волокна коллагена, эластина и основной ткани — матрицы. Коллаген составляет 75\% сухой массы, а эластин — около 4\%. Плотность кожи в норме (область рук, груди) составляет 1100 кг/м3. Эластин растягивается очень сильно (до 200—300\%). Коллаген может растягиваться до 10\%. Механические характеристики компонентов кожи:

• коллаген — Е = 10—100 МПа, σпр =100 МПа;

• эластин — Е = 0,5 МПа, σпр = 5 МПа.

Рис. 11.16. Схематическое изображение слоев кожи

Рис. 11.18. Поверхностная плотность эпидермиса для различных участков тела

Механические свойства кожи в норме изменяются с возрастом. Это показано ниже на примере кожи груди.

Параметр

До 1 года

5—9 лет

25—30 лет

σМПа

15—27

ε, \%

130—145

80—140

Vсдвиг м/с

25—35

40—60

При исследовании механических свойств кожи с помощью акустического анализатора тканей, позволяющего оценивать скорость распространения акустических возмущений звукового диапазона (5—6 кГц) была выявлена акустическая анизотропия кожи. Это проявляется в том, что скорость распространения поверхностной волны (V) во взаимно перпендикулярных направлениях — вдоль вертикальной (У) и горизонтальной (X) осей тела различается.

Для количественной оценки степени выраженности акустической анизотропии был использован коэффициент анизотропии, который вычислялся по формуле

где Vу — скорость вдоль вертикальной оси, Vx — вдоль горизонтальной оси.

Проявление акустической анизотропии на различных участках кожи представлено в табл. 11.5, где указаны преимущественные соотношения скоростей и коэффициенты акустической анизотропии (данные указаны для лиц 18—30 лет). Доля проявления соответствующей акустической анизотропии указана для лиц нормального телосложения.

Таблица 11.5

Проявление акустической анизотропии в коже

Проявление акустической анизотропии находится в соответствии с ориентацией линий естественного натяжения кожи, так называемых линий Лангера. Сопоставление ориентации линий Лангера и вида акустической анизотропии показано на рис. 11.19.

Рис. 11.19. Проявление акустической анизотропии и ориентация линий Лангера на различных участках тела

Степень анизотропии кожи при некоторых патологиях сильно возрастает. Например, при псориазе, при атонических дерматитах (особенно в областях сгибательных поверхностей) или на коже верхнего века при прогрессирующей близорукости.

На некоторых участках кожи проявляется асимметрия. Так, коэффициенты акустической анизотропии на коже голени различны для левой и правой ноги.

Существуют некоторые различия механических свойств кожи в зависимости от пола.

Сжимаемость кожной складки у девушек в области ягодиц больше, чем у юношей. В области задней поверхности шеи, на бедре, бицепсах, в надколенной и икроножной области наоборот, меньше у девушек, чем у юношей.

У женщин степень растяжимости кожи выше, а эластичность меньше по сравнению с мужчинами.

На тепловые раздражители реакции кожи (развитие терморегуляторных реакций) у мужчин и женщин одинаковы. Холодовые реакции существенно различаются у мужчин и женщин. Причем зимой толерантность к холодовому воздействию существенно выше у женщин. Летом различия менее выражены.

Механические свойства кожи .зависят от содержания в ней влаги. Влажность окружающей среды существенно влияет на эластичность кожи. Все указанные особенности кожи необходимо учитывать при проведении реабилитационных мероприятий, в частности, при проведении массажа.

Мышечная ткань

Мышечная активность — это одно из общих свойств высокоорганизованных живых организмов. Вся жизнедеятельность человека связана с мышечной активностью. Она обеспечивает работу отдельных органов и целых систем: работу опорно-двигательного аппарата, легких, сосудистую активность, желудочно-кишечного тракта, сократительную способность сердца и т. д. Нарушение работы мышц может привести к патологии, а ее прекращение — даже к летальному исходу (например, смерть при электротравме от удушья в результате парализации дыхательных мышц).

Мышцы разнообразны по форме, размерам, особенностям прикрепления, величине максимально развиваемого усилия. Количество мышц превышает число звеньев тела. Мышца состоит из большого числа двигательных единиц, каждая из которых управляется через собственный мотонейрон. Таким образом, количество управляющих воздействий в мышечной (нервно-мышечной) системе огромно. Тем не менее эта система обладает удивительной надежностью и широкими компесаторными возможностями, способностью не только многократно повторять одни и те же стандартные комплексы движений, но и выполнять нестандартные произвольные движения. Помимо способности организовывать и активно заучивать необходимые движения, эта система обеспечивает приспособляемость к быстро меняющимся условиям окружающей и внутренней среды организма, изменяя применительно к этим условиям привычные действия.

Пример

Испытуемым предлагалось выполнить дифференцированные нажимы пальцем руки на жесткую опору в следующих ситуациях:

1) при переходе в невесомость;

2) в состоянии невесомости;

3) при возвращении в нормальные условия.

Наихудшее выполнение данного навыка наблюдалось в случае (1), к концу (2) в известной мере восстанавливалась способность дифференцировать нажимы. Переход (3) вновь нарушает координацию данного движения, которая, однако, вскоре полностью восстанавливается.

Деятельность мышц отражается в структуре движения. Благодаря этому становится возможным, наблюдая движение, получать информацию о мышечной регуляции движения и ее нарушениях. Такой возможностью широко пользуются при диагностике заболеваний, при разработке специальных тестов для контроля двигательных навыков у спортсменов.

Независимо от назначения, особенности строения и способов регуляции принцип работы различных мышц организма одинаков.

В состав мышц входит совокупность мышечных клеток (волокон), внеклеточное вещество (соединительная ткань), состоящее из коллагена и эластина, а также густая сеть нервных волокон и кровеносных сосудов.

Мышцы по строению разделяются на два вида:

Гладкие мышцы, основу которых составляют веретеновидные клетки с удлиненным ядром; они не имеют поперечной исчерченности; характеризуются медленным сокращением, малой затратой энергии и малой утомляемостью

Кишечник, стенки внутренних органов (сосудов, желудка, мочевого пузыря) некоторых желез

Поперечно-полосатые мышцы состоят из длинных (несколько см) многоядерных волокон (скелетные мышцы), или из относительно коротких (сердечная мышца), имеющих поперечную исчерченность, которая обусловлена регулярно расположенными миофибриллами

Скелетные мышцы, мышцы сердца; мышцы, прочно прикрепленные к костям и обеспечивающие движения головы, туловища, конечностей

Режим работы мышц может быть весьма разнообразным. Различают три основных вида таких режимов: изометрический, изотонический, ауксотонический, когда сокращение мышцы происходит в условиях некоторого предварительного растяжения.

Для исследования характеристик сокращения мышц реализуют два искусственных режима.

Изометрический режим — когда напряжение мышцы происходит в искусственных условиях сохранения ее длины, что достигается с помощью фиксатора. Схема опыта для реализации этого режима показана на рис. 11.20, а.

Рис. 11.20. Изометрический режим: а) схема установки для реализации режима:

Ф — фиксатор длины, М — мышца, Эл — электрод,

ДF — датчик силы; б) временная зависимость развиваемой силы F

одиночного сокращения мышцы при изометрическом режиме

сокращения, I — длина мышцы, Р —, максимальная сила

После установки длины на электроды (Эл) подается электрический стимул. В возбужденной мышце развивается сила F (напряжение), которая регистрируется датчиком силы (ДF). Максимальная сила Р0, которую может развивать мышца, зависит от ее начальной длины и области перекрытия актиновых и миозиновых нитей, в которой могут замыкаться мостики: при начальной длине саркомера 2,2 мкм в сокращении участвуют все мостики.

Если длина мышцы больше, то и количество мостиков в мышце больше, поэтому и возникающая сила будет больше. На рис. 11.20, б большей длине мышцы (l1 > l2) соответствует большая сила (Р01 > Р02).

Изотонический режим — когда искусственно поддерживается постоянство напряжения мышцы. Например, мышца поднимает постоянный груз Р = const, а регистрируется изменение ее длины при сокращении.

Схема опыта для реализации этого режима показана на рис. 11.21, а.

Рис. 11.21. Изотонический режим:

а) схема установки для реализации режима: Р — нагрузка, Д, — датчик изменения

длины; б) временная зависимость изменения длины мышцы ∆l одиночного

сокращения мышцы , Р — нагрузка

При этом режиме к незакрепленному концу мышцы подвешивается груз Р, а на электроды подается электрический импульс. Регистрируется сокращение мышцы, т. е. изменение ее длины ∆l со временем. В изотоническом режиме мышца быстро сокращается до определенной длины, а затем расслабляется. Вид зависимости ∆l (t) для двух различных нагрузок показан на рис. 11.21, б. При изотоническом режиме имеет место следующее: чем больше груз Р, тем меньше укорочение мышцы и короче время удержания груза. При некоторой нагрузке Р = Р0 мышца совсем перестанет поднимать груз. Это значение Р0 и будет максимальной силой изометрического сокращения для данной мышцы (рис. 11.20, б).

При увеличении нагрузки угол наклона восходящей части кривой изотонического сокращения уменьшается: α2 < α2 рис. 11.21, б. Это означает, что скорость укорочения с ростом нагрузки падает.

Примеры режимов сокращения

Изометрический режим

Изотонический режим

Жевательные мышцы при сомкнутых челюстях (огромное напряжение)

Сокращение бицепса плеча

Сокращение миокарда желудочков при закрытых клапанах

Сокращение миокарда желудочков при открытии полулунных клапанов

Уравнения Хилла

Между нагрузкой (Р) и скоростью укорочения мышцы (v) при изотоническом сокращении существует зависимость, выражаемая уравнением Хилла:

или

где а — постоянная, имеющая размерность силы; Ро — постоянная, соответствующая максимальной силе, развиваемой в изотоническом режиме (максимальный груз, который удерживает мышца без ее удлинения); b — константа, имеющая размерность скорости.

Анализ уравнения (11.7) показывает, что в зависимости от нагрузки Р поведение мышцы, т. е. ее сокращение, проявляется по-разному. Рассмотрим два крайних случая.

Нагрузка

Скорость

Поведение мышцы

P=0

Максимальная скорость сокращения мышцы

P=P0

v=0

Сокращения мышцы не происходит

Рассмотрим энергетические характеристики процесса. Работа А, совершаемая мышцей при одиночном укорочении на величину ∆l, определяется известной формулой:

А = Р∙∆l.

Эта зависимость очевидно нелинейная, так как скорость сокращения мышцы (v) зависит от нагрузки (Р). Но на ранней стадии сокращения этой нелинейностью можно пренебречь и считать v = const. Тогда

∆l = v∙∆t,

а развиваемая мышцей мощность имеет вид:

W=P∙v. (11.8)

Подставляя (11.7) в (11.8), получим зависимость полной мощности от развиваемой силы Р:

(11.9)

График функции (11.9) имеет колоколообразную форму и представлен на рис. 11.22 в относительном виде.

Рис. 11.22. Зависимость мощности мышцы от нагрузки

Эта кривая, полученная из уравнения Хилла, хорошо согласуется с опытными данными. В зависимости от нагрузки Р мощность имеет разные значения

Мощность

Нагрузка

W=0

Р=Р0

W=0

P=0

W — максимальна

,

когда P=0,31P0

При работе мышц КПД при сокращении может быть определен как отношение совершенной работы к затраченной энергии

Развитие наибольшей мощности и эффективности сокращения достигается при усилиях 0,3—0,4 от максимальной изометрической нагрузки Р0 для данной мышцы. Это используют, например, спортсмены-велогонщики: при переходе с равнины на горный участок нагрузка на мышцы возрастает и спортсмен переключает скорость на низшую передачу, тем самым уменьшая Р, приближая ее к Ропт.

Практически КПД может достигать 40—60\% для разных типов мышц.

Среднее значение плотности мышечной ткани 1050 кг/м3. Модуль Юнга Е =105 Па.

Сосудистая ткань

Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.

Так как стенки кровеносных сосудов построены из высокоэластического материала, то они способны к значительным обратимым изменениям размера при действии на них деформирующей силы. Деформирующая сила создается внутренним давлением. При заданном внутреннем давлении Р равновесное состояние сосуда описывается уравнением Ламе:

где r — внутренний радиус кровеносного сосуда, h — толщина стенки сосуда, σ— механическое напряжение в стенке сосуда.

Следует иметь в виду, что живой организм имеет два механизма сопротивления нагрузкам. Некоторые части организма (кости, зубы) воспринимают нагрузку так же, как и неживое тело. Другие (мышцы) — непрерывно подстраиваются под внешнюю нагрузку. Но сохранение напряжения в мышечной ткани требует непрерывного притока энергии. Расход энергии приводит к усталости мышц. Только обморок или смерть прерывают мышечные процессы.

Представления о механических свойствах биологических тканей важны для различных направлений:

• в спортивной и космической медицине;

• результативность спортивных достижений и ее возрастание побуждают спортивных медиков обращать внимание на физические возможности человека;

• в спортивной медицине следует знать устойчивость биологических структур по отношению к различным деформациям;

• в спортивной травматологии и ортопедии вопросы механического воздействия на организм являются определяющими.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *