Мицелла гидроксида железа 3

1. Получение золя берлинской лазури:

3 K4 + 4FeCl3→Fe4 3↓ + 12KCl

Если в избытке взять комплексную соль K4, то потенциалопределяющими ионами будут являться ионы 4–, а противоионами –K+. Гранула в этом случае будет иметь отрицательный заряд:

{m3]n4–(4n–x)K+}–xxK+

При получении данного золя в условиях избытка FeCl3потенциалопределяющими ионами станут ионыFe3+, а противоионами –Cl–. Гранула при этом приобретет положительный заряд:

{m3]nFe3+(3n–x)Cl–}+xxCl–

2. Получение с помощью гидролиза FeCl3 золя гидроксида железа (III).

FeCl3+ 3H2OFe(OH)3↓ + 3HCl

Часть образовавшегося Fe(OH)3в условиях проведения реакции прореагирует с соляной кислотой:

Fe(OH)3 + HCl → FeOCl + 2 H2O

В связи с этим в роли стабилизатора будет выступать FeOCl:

FeOCl↔FeO++Cl–

т.к. хлорид железа(III) расходуется полностью, то потенциалопределяющими будут являться ионыFeO+, т.к. именно они, а не ионыFe3+, станут присутствовать в растворе в избытке.

Формула мицеллы (рис. 60а) при этом запишется следующим образом:

{m · nFeO+ (n – x) Cl–}+x xCl–

3. Получение золя As2s3:

2H3AsO3 + 3H2S → As2S3 ↓ + 6 H2O

избыток

Двухосновная сероводородная кислота является слабым электролитом, в растворе диссоциирует преимущественно по первой стадии

H2S↔HS–+H+,

поэтому потенциалопределяющими ионами в данном случае будут выступать ионы HS–. В связи с этим формулу образовавшейся мицеллы (рис. 60б) можно представить следующим образом:

{mn HS–(n – x) H+}–x xH+

Рис. 60. Схема строения: a– мицеллы гидроксида железа (III); б – мицеллы сульфида мышьякаm– число молекул, образующих ядро; δ – адсорбционный слой (плотный);Q – диффузный слой противоионов

В качестве примера образования ДЭС путем поверхностной диссоциации можно рассмотреть строение мицеллы кремниевой кислоты, часть молекул которой, находясь на поверхности ядра, диссоциирует по уравнению:

H2SiO3↔H++HSiO3–

Причем ионы HSiO3–, прочно связанные с ядром, являются потенциалопределяющими. Роль противоионов выполняют подвижные ионы Н+, которые распределяются как в адсорбционном, так и в диффузном слоях (рис. 61). Схематическое строение коллоидной частицы данного золя можно представить следующим образом:

{mn HSiO3– (n – x) H+} xH+

Рис. 61. Диссоциация поверхностных силанольных групп

Следует отметить, что мицеллы в золях не имеют строго определенного состава и обладают более сложным строением, которое предложенные нами формулы отражают со значительной степенью условности. Тем не менее, они позволяют интерпретировать многие свойства золей как в качественном, так и в количественном плане, и поэтому представляют определенный интерес.

Электрокинетические свойства золей

Доказательство того, что коллоидные частицы в золях состоят из двух разноименно заряженных частей, способных перемещаться друг относительно друга, можно получить, если воздействовать на дисперсную систему внешним электрическим полем.

Впервые это явление в 1809 г. наблюдал профессор Московского университета Ф. Рейс (рис. 62). В его опытах в кусок влажной глины (1) были вставлены две стеклянные трубки без дна (2), в которые до одинакового уровня наливали воду. В трубки были опущены электроды, присоединенные к соответствующим полюсам источника постоянного тока. Через некоторое время под влиянием электрического поля частицы глины, отрываясь от поверхности, стали двигаться в стеклянную трубку с положительно заряженным электродом (3), образуя в ней хорошо заметную суспензию (в виде мути) (рис. 62). Это свидетельствует о том, что сами частички глины заряжены отрицательно.

Рис. 62. Схема установки для проведения электрофореза и электроосмоса

Уровень жидкости в трубке с частицами глины при этом понизился, зато во второй трубке (с отрицательно заряженным электродом) (4), наоборот, увеличился на величину h(5). Сама жидкость при этом осталась прозрачной и, очевидно, приобрела положительный заряд.

При дальнейшем изучении этих явлений обнаружилось, что они характерны для многих коллоидно-дисперсных систем.

Движение твердых частиц дисперсной фазы во внешнем электрическом поле к одному из электродов получило название электрофореза.

Соответственно, перемещение жидкой дисперсионной среды к противоположно заряженному электроду назвали электроосмосом.

Оба эти явления относятся к так называемым электрокинетическим явленияминаблюдаются при возникновении разности потенциалов в дисперсной системе.

Последующие исследования показали, что электрокинетические явления в золях наблюдаются не только при внесении их во внешнее электрическое поле. В 1859 г. Квинке обнаружил, что разность потенциалов в дисперсных системах возникает при механическом проталкивании воды через пористую диафрагму или через капилляр, т.е. при движении дисперсионной среды относительно неподвижной дисперсной фазы (рис. 63а). При этом протекание жидкости затрудняется.

а б

Рис. 63. Схемы установки для наблюдения за: а – потенциалом протекания б – потенциалом седиментации

Это явление (обратное электроосмосу) получило название эффекта протекания или эффекта истечения, а возникающая разность потенциалов – потенциала протекания.

В 1878 г. Дорн обнаружил другое электрокинетическое явление, которое заключалось в возникновении разности потенциалов при механическом передвижении твердых частиц относительно неподвижной жидкой фазы(например, при оседании крупинок песка в воде) (рис. 63б).Данное явление обратно электрофорезу и получило название эффекта седиментации, возникающая разность потенциалов – потенциала седиментации.

Образование потенциалов протекания и седиментации наблюдается в производствах, в которых осуществляется транспортировка жидкости (перекачка технологических растворов, жидкого топлива), осаждение суспензий и эмульсий при разделении фаз. На концах трубопроводов и аппаратов возникают при этом высокие разности потенциалов, которые часто являются причиной искровых разрядов, вызывающих пожары и взрывы.

Электрокинетические явления можно объяснить существованием на поверхности частиц дисперсной фазы двойного электрического слоя, т.е. возникновением разности потенциалов между гранулой и диффузным слоем мицеллы.

Так как при этом гранулы в золе имеют заряды одного знака, а их диффузные слои – другого знака, то под действием внешнего электрического поля эти составные части мицеллы приходят в движение друг относительно друга (рис. 64).

Рис. 64. Схема движения гранулы и диффузного слоя мицеллы во внешнем электрическом поле

Например, если гранула заряжена отрицательно, то во внешнем электрическом поле она будет перемещаться к аноду, положительно заряженные противоионы диффузного слоя вместе со своими гидратными оболочками станут накапливаться возле катода.

При движении твердой и жидкой фаз мицеллы друг относительно друга скольжение и разрыв их происходит не по поверхности гранулы, а на некотором расстоянии от нее, за пределами адсорбционного слоя по плоскости АВ (рис. 65). Поэтому противоионы, находящиеся в адсорбционном слое, будут неподвижны относительно гранулы и при электрофорезе станут перемещаться вместе с ней, увлекая за собой свои гидратные оболочки. Потенциал, возникающий на плоскости скольжения, является дзета-потенциалом (ζ-потенциалом), он определяет скорость перемещения гранулы и диффузного слоя друг относительно друга при наложении электрического поля, т.е. является причиной электрокинетических явлений. В связи с этим он и получил свое второе название – электрокинетический потенциал.

Рис 65. Строение двойного электрического слоя: 1 – потенциалопределяющие ионы; 2 – адсорбционный слой противоионов; 3 – диффузный слой противоионов; АВ – плоскость скольжения

Измеряя скорость движения заряженных гранул во внешнем электрическом поле, можно рассчитать величину их ζ-потенциала и тем самым оценить уровень устойчивости золя.

Возникновение потенциала протекания (течения), объясняется тем, что движущаяся жидкость увлекает за собой ионы диффузного слоя коллоидных частиц, находящихся в неподвижной твердой среде, и оказывается тем самым носителем электрического заряда, вследствие чего в ней возникает ток, называемый током течения.

Потенциал седиментации образуется из-за того, что в процессе осаждения ионы диффузного слоя в силу молекулярного трения и разности в массах отстают от более тяжелых движущихся гранул. При этом разные части системы приобретают электрические заряды противоположного знака.

Явления электрофореза и электроосмоса широко используются в промышленности, биологических исследованиях, медицине.

Электрофоретическое осаждение частиц золей на металлические поверхности применяют для нанесения защитных и декоративных покрытий. Так получают прочные и красиво окрашенные поверхности при электрофоретическом осаждении красок и лаков, электроизоляционные резиновые пленки при осаждении частиц каучука из его водных дисперсий, пленки оксидов щелочноземельных металлов на вольфрамовых нитях радиоламп. Электрофорез используют для очистки дыма в заводских трубах от частиц сажи и пыли.

Метод электроосмоса имеет большое практическое применение в процессах обезвоживания и сушки пористых материалов, осадков, или концентрированных (кашицеобразных) коллоидных систем. Для этой цели применяют, например, специальные электрофильтры – прессы (рис. 66).

Рис. 66. Схема сушки методом электроосмоса

Основную часть их представляют 2 металлические пластины (П), расположенные одна над другой горизонтально. Нижняя пластина имеет множество отверстий. Подлежащую обезвоживанию кашицеобразную массу помещают между этими пластинами, которые подключают к разным полюсам источника постоянного тока.

При этом верхняя пластина должна иметь заряд, совпадающий по знаку с зарядом диффузного слоя коллоидных частиц, а нижняя – противоположный. Вследствие электроосмоса жидкость устремляется к нижней пластинке и удаляется через ее отверстия.

Электроосмос широко применяется для понижения уровня грунтовых вод, для осушения глинистых осадочных слоев (рис. 67). Частицы коллоидно-дисперсных грунтов заряжены, как правило, отрицательно. Если в такой грунт ввести два металлических электрода, один из которых (отрицательно заряженный) опустить в специально пробуренную скважину (1), то вода под действием электрического поля будет перемещаться в скважину, откуда ее можно откачивать специальными насосами.

Рис. 67. Схема установки для обезвоживания грунтов методом электроосмоса: 1 – скважина с вставленным в нее металлическим фильтром; 2 – глубинный насос; 3 – генератор постоянного тока; 4 – металлический стержень

Электрофорез является эффективным средством для изучения фракционного состава сложных биологических жидкостей (особенно крови), содержащих белковые молекулы, энзимы, вирусы, бактерии, различные другие клеточные структуры (форменные элементы крови). Все эти частицы имеют в биологических жидкостях, как правило, отрицательный заряд различной величины. Следовательно, они будут обладать неодинаковой электрофоретической подвижностью во внешнем электрическом поле и их можно разделить на различные фракции.

В медицине для диагноза и контроля за ходом болезней таким образом получают электрофореграммы белков сыворотки крови. Они имеют специфические различия для каждого заболевания, по сравнению с таковыми у здоровых организмов.

Электрофоретические методы находят широкое применение в иммунологических исследованиях (в частности, для оценки клеточного иммунитета у онкологических больных), для определения изоэлектрической точки белков.

В фармацевтической промышленности электрофорез применяют для очистки лекарственных препаратов, выделенных из животных и растительных клеток, а также для контроля степени их чистоты и однородности.

В практической медицине широко используется электрофоретический метод местного введения через неподвижную кожу лекарственных препаратов при лечении самых различных заболеваний. При этом проницаемость клеток кожи увеличивается. Во многих случаях, как побочный эффект, наблюдается уменьшение болевых ощущений, ослабление чувства тревоги и усталости.

Экспериментальная часть

Разновидности конденсационного метода получения золей.

Смена растворителя. Получение гидрозоля серы или канифоли

К 10 мл воды в пробирке пипеткой прибавьте 1-2 капли насыщенного раствора серы или канифоли в спирте и после каждой капли производите перемешивание встряхиванием. Растворы веществ в спирте прибавляют в воду до появления опалесценции. Получают золь серы (канифоли) в воде, гранулы которого заряжены отрицательно.

Реакция гидролиза. Получение золя гидроксида железа (III).

В пробирку наливают 1 мл 2 % раствора хлорида железа(III). разбавляют его 10 мл дистиллированной воды и нагревают до кипения на водяной бане. В кипящую воду быстро прилейте 2-3 капли 2%-ного раствора Образуется красновато-бурый прозрачный золь гидроксида железа(III).

Запишите в тетрадь уравнения происходящих реакций. Составьте формулу мицеллы золя гидроксида железа (III), полученного гидролизом хлорида железа (III).

Молекулы хлорида железа (III) в водном растворе подвергаются частичному или полному гидролизу по уравнениям:

FeCl3 + H2O = FeOCl + 2HCl

FeCl3 + 3H2O = Fe(OH)3 + 3HCl

Молекулы FeOCl, подвергаясь электролитической диссоциации, дают ионы:

FeOCl = FeO+ + Cl-

FeO+ ионы, адсорбируясь на поверхности частиц коллоидных размеров, вызывают появление положительных зарядов у коллоидных частиц Fe(OH)3 – золя. Распределяясь по всему объему золя и взаимодействуя с ионами среды, мицеллы приобретают следующее строение:

{m nFeO+ (n-x) Cl-]+x x Cl- }

Fe(OH)3 – частица (ядро мицеллы), образовавшаяся в результате гидролиза хлорида железа (III); nFeO+ — ионы адсорбировавшееся на поверхности ядра (потенциалопределяющие ионы); (n-x) Cl- — ионы адсорбировавшиеся на поверхность ядра из окружающего раствора, после приобретения частицей положительного заряда (противоионы); x Cl- — ионы взаимодействующие (но неадсорбирующиеся) заряженной частицей. Их адсорбция затруднена существующими гидратными оболочками. Это противоионы. Все образование называется мицеллой.

Сохраните полученный раствор для проведения последующих опытов.

Работа 9 получение золя гидроксида железа (III). Коагуляция

Дисперсной называется двух- или многофазная, т.е. гетерогенная система, в которой, по крайней мере, одна из фаз представлена очень маленькими частицами, размеры которых тем не менее заметно превосходят молекулярные. Частицы раздробленного вещества при этом называются дисперсной фазой, а гомогенная фаза, в которой они распределены (растворитель), представляет собой дисперсионную среду. Примерами дисперсных систем могут служить дымы, туманы, взвеси различных веществ, например глины в воде и т.д.

Дисперсные системы классифицируют по агрегатному состоянию дисперсной фазы и дисперсионной среды. Системы, представляющие собой мелкие капельки жидкости в жидкой дисперсионной среде, называются эмульсиями. Примеры эмульсий молоко, латексы, различные косметические препараты и т.д. Высокодисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой называют золями при невысокой концентрации дисперсной фазы (когда частицы обособлены) и гелями, когда частицы агрегируют и образуют связно дисперсную систему. В случае грубых дисперсий твердого вещества в жидкой дисперсионной фазе различают малоконцентрированные суспензии и высококонцентрированные пасты.

Дисперсные системы различаются по величине частиц раздробленного вещества, или, как говорят, по степени дисперсности. Различают грубодисперсные и коллоидно-дисперсные системы. В суспензиях и эмульсиях радиус частиц больше 0,1 мк. Такие дисперсные системы, как, например, взвесь глины в воде, не обладают осмотическим давлением, не фильтруются через бумажные фильтры и являются неустойчивыми, т.е. не остаются долго во взвешенном состоянии в жидкой среде, а выпадают под действием силы тяжести на дно сосуда. Это кинетически неустойчивые системы. С повышением степени дисперсности, т.е. уменьшением частиц дисперсной фазы, системы приобретают новые качества. Так, дисперсные системы, состоящие из частиц с радиусом от 0,1 мк до 1 ммк, качественно отличны от суспензий. Частицы таких систем находятся в непрерывном хаотическом движении, вследствие чего обладают и осмотическим давлением, и способностью к диффузии. Благодаря непрерывному движению частиц они остаются кинетически устойчивыми. Такие системы в проходящем свете прозрачны, в то время как суспензии мутны. Подобного рода дисперсные системы часто называют коллоидными растворами. Частицы коллоидных растворов (золей) значительно больше молекул, так как они представляют собой агрегаты из достаточно большого числа молекул или атомов.

В суспензиях частицы можно наблюдать при помощи микроскопа и тем самым обнаружить поверхность раздела фаз. Коллоидные частицы из-за незначительных размеров нельзя обнаружить даже под микроскопом.

В истинных растворах размер частиц доведен до размеров молекул или ионов. В них нет поверхности раздела между составляющими компонентами, т.е. растворителем и растворенным веществом. Истинные растворы агрегативно устойчивы.

Коллоидные системы по термодинамической устойчивости делятся на лиофобные и лиофильные. Термодинамически устойчивые системы, образующиеся при самопроизвольном диспергировании одной из фаз, называются лиофильными. Самопроизвольному диспергированию способствует усиление взаимодействия дисперсной фазы с дисперсионной средой. Примерами лиофильных коллоидных систем могут служить растворы мыл и других поверхностно-активных веществ. К ним также относят растворы белков и других высокомолекулярных соединений.

Основным свойством лиофобных систем является их термодинамическая неустойчивость, связанная с большим запасом свободной поверхностной энергии на развитой межфазной поверхности раздела. Самопроизвольно из макроскопических фаз они не образуются. Получение их требует затраты внешней энергии – механической (растирание), химической (проведение химических реакций), электрической (распыление под действием электрического тока). Однако такие коллоидные системы могут быть кинетически устойчивыми, т.е. сохраняться без изменений в течение более или менее длительного времени.

Существуют две группы методов получения лиофобных коллоидных систем. Методы, основанные на раздроблении крупных частиц на более мелкие, получили название методов диспергирования. Методы, связанные с агрегацией молекул или ионов в более крупные частицы, называются конденсационными. Важное условие для получения устойчивой коллоидной системы – присутствие стабилизаторов, т.е. веществ, которые, адсорбируясь на поверхности коллоидных частиц, создавали бы достаточно интенсивное взаимодействие между поверхностью и окружающей средой (растворителем).

К методам конденсации относятся следующие способы получения коллоидных систем.

  • Конденсация молекул испаряющегося вещества, соединяющихся в мелкие частицы.

  • Замена растворителя, т.е. такое изменение среды, при котором вещество из растворимого становится нерастворимым.

  • Химические реакции в растворе, сопровождающиеся образованием трудно растворимых веществ.

Однако во всех этих случаях коллоидные системы получаются тогда, когда растворимость дисперсной фазы ничтожна мала. При несоблюдении этого условия возможно образование молекулярных растворов. Кроме того, необходимо, чтобы между частицами и средой существовало взаимодействие, препятствующее связыванию частиц друг и другом.

Рассмотрим строение коллоидных частиц на примере золя гидроксида железа (III). Его получают реакцией гидролиза по уравнению:

FeCl3 + 3H2O  Fe(OH)3 + 3HCl.

Поверхностные молекулы агрегата Fe(OH)3 вступают в химическое взаимодействие с HCl:

Fe(OH)3 + HCl  FeOCl + 2H2O.

Молекулы FeOCl, подвергаясь диссоциации, образуют ионы FeO+ и Cl-. Из растворов на поверхности коллоидных частиц адсорбируются ионы близкие по своей природе к составу ядра – правило Липатова. В рассматриваемом случае это будут ионы FeO+. Строение частиц золя гидроксида железа (III) схематически можно изобразить следующим образом:

FeOCl  FeO+ + Cl-

nFe(OH)3 + mFeO+ + mCl-  +x xCl-

Fe(OH)3 –ядро коллоидной частицы, на его поверхности находятся адсорбированные ионы FeO+, которые придают ядру положительный заряд. Они называются потенциалобразующими. К заряженному ядру притягиваются противоионы Cl-, формируя двойной электрический слой (ДЭС). Часть противоионов Cl- находится вблизи поверхности в так называемом адсорбционном слое. Противоионы в адсорбированном слое вместе с ядром составляют гранулу. Этот слой перемещается совместно с частицей. Остальное количество противоионов Cl- находится в свободном объеме, образуя диффузный слой (см. рис. 10.1, работа 10). В целом рассматриваемая коллоидная частица (гранула) несет некоторый положительный заряд. При сближении двух таких частиц, несущих на поверхности одноименный заряд, будет происходить отталкивание, препятствующее их слипанию (электростатический барьер). Сближению коллоидных частиц препятствует также и слой молекул растворителя, в частности воды, входящих в сольватную (гидратную) оболочку ионов на поверхности частицы. Кроме того, на поверхности коллоидных частиц могут адсорбироваться молекулы специально добавляемых веществ-стабилизаторов (адсорбционно-сольватный барьер).

Наличие электростатического и адсорбционно-сольватного барьера, препятствующих агрегации (соединению) частиц, обеспечивают агрегативную устойчивость лиофобным коллоидным системам, т.е. такие системы не изменяются заметно в течение длительного времени (иногда десятилетиями), несмотря на термодинамическую неустойчивость.

Так как лиофобные дисперсные системы являются термодинамически неравновесными, в них могут идти процессы укрупнения частиц и соответственно уменьшения межфазной поверхности. Наиболее характерный и общий для дисперсных систем путь перехода к равновесному состоянию – коагуляция, т.е. слипание частиц дисперсной фазы. Часто коагуляция сопровождается появлением мути, изменением окраски коллоидных растворов, образованием осадка (явная коагуляция). Когда происходит укрупнение частиц без видимых внешних изменений, говорят о скрытой коагуляции.

Коагуляция может происходить при действии на систему различных факторов: механическое воздействие (перемешивание или встряхивание), резкое охлаждение или нагревание, пропускание электрического тока. Иногда коагуляция может произойти в результате «старения» или химических изменений, происходящих в золе.

Добавление растворов электролитов также вызывает коагуляцию лиофобных золей. При этом коагулирующее действие оказывает один из ионов электролита: либо катион, либо анион.

Порогом коагуляции называется минимальная концентрация электролита, вызывающая коагуляцию.

Коагулирующий ион несет заряд, противоположный заряду коллоидной частицы, при этом порог коагуляции тем меньше, чем больше заряд (валентность) коагулирующего иона – правило Шульце-Гарди.

При добавлении раствора электролита к золю противоионы нейтрализуют заряд на поверхности коллоидной частицы (происходит сжатие ДЭС), что позволяет частицам золя легче приближаться друг к другу, и это воздействие тем сильнее, чем больший заряд несет противоион.

При добавлении некоторых веществ нередко наблюдается повышение устойчивости лиофобных золей к коагулирующему действию электролитов. Такое стабилизирующее действие на дисперсные системы называется коллоидной защитой. Защитными свойствами обладают белковые вещества (желатин, альбумины, казеин), полисахариды (крахмал, декстрин), некоторые поверхностно-активные вещества. Если, например, к золю гидроксида железа (III) добавить некоторое количество желатина, то для коагуляции такого золя требуется значительно больше электролита, чем для коагуляции незащищенного золя. Коллоидную защиту объясняют адсорбцией стабилизаторов на поверхности частиц дисперсной фазы и образованием слоя.

Коллоидная защита широко используется при получении устойчивых лиофобных золей, применяемых в качестве лекарственных препаратов. Например, колларгол и протаргол содержат 8 и 70% высокодисперсного металлического серебра, стабилизированного гидролизатами белков.

Коллоидная защита играет существенную роль в физиологических процессах. Содержание карбоната и фосфата кальция в крови значительно превышает их растворимость в воде. Отложению этих солей препятствуют защитные вещества крови, которые не позволяют коллоидным частицам нерастворимых солей объединяться в крупные агрегаты и осаждаться. Образование желчных и мочевых камней в организме связано с уменьшением при патологических состояниях защитного действия определенных веществ по отношению к билирубину, холестерину и уратам.

Цель работы.

  1. Получить золь гидроксида железа

  2. Ознакомиться с коагуляцией гидрофобного золя электролитами. Определить порог коагуляции золя электролитами.

Реактивы.

  • Хлорид железа FeCl3, раствор 2%-ный.

  • Растворы электролитов: KCl – 1 н, K2SO4 – 0,01 н, K3 – 0,001 н.

  • Вода дистиллированная.

Оборудование и посуда.

  • Термостойкий стакан на 250 мл.

  • Штатив с 12-ю пробирками.

  • Пипетки на 5 и 10 мл.

  • Электроплитка.

Выполнение работы.

Опыт №1. Получение золя гидроксида железа (III).

100–150 мл дистиллированной воды нагревают в стакане до кипения. Затем в кипящую воду постепенно при нагревании добавляют 5-10 мл 2%-ного раствора FeCl3, доводят до кипения. Полученный коллоидный раствор гидроксида железа (III) желто-коричневого цвета осторожно охлаждают до комнатной температуры. Приготовленный золь используют для определения порога коагуляции электролитов и для наблюдения электрофореза (работа 10).

Опыт №2. Определение порога коагуляции золя электролитами.

  1. В двенадцать чистых пробирок наливают пипетками объемы дистиллированной воды и растворов электролитов, указанные в таблице 9.1.

  2. Во все пробирки пипеткой добавляют по 5 мл охлажденного до комнатной температуры золя. Содержимое пробирок хорошо перемешивают.

  3. Через 1 час отмечают, в каких пробирках наблюдается явная коагуляция (помутнение) и седиментация. Результаты наблюдений заносят в таблицу 9.2: в строке напротив соответствующего электролита записывают «+», если коагуляция наблюдается, «–», если коллоидный раствор в пробирке прозрачен.

Таблица 9.1

№ пробирки

Золь гидроксида железа (III), мл

Дистиллированная вода, мл

4,5

Раствор электролита, мл

0,5

Результат наблюдения через 1 час («+» – если есть помутнение и осадок

«–» –если коагуляция не наблюдается)

Для каждого электролита отмечают наименьший объем, при добавлении которого наблюдалась коагуляция золя.

Обработка результатов.

  1. Порог коагуляции выражается в миллимолях электролита на литр коллоидного раствора (ммоль/л). Порог коагуляции вычисляют по формуле:

,

где С – концентрация раствора добавленного электролита, моль/л, V – наименьшее число миллилитров раствора электролита, достаточное для коагуляции золя, мл (см. таблицу 9.1), 10 – суммарный объем золя после добавления электролита, мл.

  1. Вычисляют порог коагуляции для каждого электролита и результаты записывают в таблицу 9.2.

Таблица 9. 2

Электролит

Коагулирующий ион

Порог коагуляции

Контрольные вопросы.

  1. Какие существуют методы получения дисперсных систем?

  2. Чем отличается коллоидно-дисперсные системы от истинных растворов и грубодисперсных систем?

  3. Приведите строение мицелл золя гидроксида железа (III), иодида серебра, полученного при избытке иодида калия и при избытке нитрата серебра.

  4. В чем заключается явление коагуляции?

  5. Что такое порог коагуляции и как его можно определить экспериментально?

  6. В чем заключается правило Шульце-Гарди?

  7. Что такое коллоидная защита?

Условная формула мицеллы золя кремниевой кислоты имеет вид:

{m·nSiO32-·2(n-x)K+}2x-·2xK+

Какой золь из тех, чьи условные формулы приведены ниже, нужно добавить к данному золю, чтобы вызвать взаимную коагуляцию:

{m·nOH-·(n-x)Na+}x-·xNa+;

{m·nFeO+·(n-x)Cl-}x+·xCl-.

Условная формула мицеллы золя гидроксида меди (II) имеет вид:

{m·nOH-·(n-x)Na+}x-·xNa+

Какой золь из тех, чьи условные формулы приведены ниже, нужно добавить к данному золю, чтобы вызвать взаимную коагуляцию:

{m·nBa2+·2(n-x)Cl-}2x+·2xCl-;

{m·nFeO+·(n-x)Cl-}x+·xCl-.

311. Какое строение будет иметь мицелла золя полученного в результате взаимодействия Na2SiO3 с избытком НС1? Какой из указанных ионов: C1-, Na+, А13+, Н+, SiO32- будет наиболее эффективным коагулятором для этой коллоидной системы? Почему?

312. Как представить условной химической формулой строение мицеллы золя, если коллоидно-дисперсная фаза m , а ионный стабилизатор

FeOCl > FeO+ + Cl-?

314. Как представить условной химической формулой строение мицеллы золя, полученного в результате взаимодействия Na2SiO3 c избытком Са(ОН)2?

Какой из этих ионов будет наиболее эффективным коагулятором для этой коллоидной системы: Al3+, Са2+, SiO32?, ОН?, Na+. Почему?

Мицелла золя гидроксида железа (III) имеет вид:

{m·nFeO+·(n-x)Cl-}x+·xCl-

316. Как представить условной химической формулой строение мицеллы золя, полученного в результате взаимодействия Li2SiO3 c избытком HCl? Какой из приведенных ионов будет наиболее эффективным коагулятором для этой коллоидной системы: Al3+, РО43-; Са2+, SiO32?, ОН?, Na+. Почему?

317. Как представить условной химической формулой строение мицеллы золя, полученного в результате взаимодействия HCl c избытком AgNO3? Какой из приведенных ионов будет наиболее эффективным коагулятором для этой коллоидной системы: Al3+, РО43-; Са2+, SiO32?, ОН?, Na+. Почему?

318. Как представить условной химической формулой строение мицеллы золя, полученного в результате взаимодействия KОН c избытком Cu(NO3)2? Какой из приведенных ионов будет наиболее эффективным коагулятором для этой коллоидной системы: Al3+, РО43-; Са2+, SiO32?, ОН?, Na+. Почему?

319. Как представить условной химической формулой строение мицеллы золя, полученного в результате взаимодействия Na2S c избытком СuCl2? Какой из приведенных ионов будет наиболее эффективным коагулятором для этой коллоидной системы: Al3+, РО43-; Са2+, SiO32?, ОН?, Na+. Почему?

320. Как представить условной химической формулой строение мицеллы золя, полученного в результате взаимодействия Bа(ОН)2 c избытком К2SO4? Какой из этих ионов будет наиболее эффективным коагулятором для этой коллоидной системы: Al3+, РО43-; Са2+, SiO32?, ОН?, Na+. Почему?

Лабораторная работа 10

Коллоидные растворы

Цель работы: изучить основные понятия коллоидной химии «дисперсность, коллоидный раствор, дисперсная фаза, дисперсионная среда, коллоидная частица, мицелла, коагуляция, седиментация, пептизация»; получение коллоидных растворов; научиться составлять схемы мицелл.

Задание: получить коллоидные растворы гидроксида железа (III) методоми конденсации и диспергирования осадка Fe(OH)3. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Системы, в которых одно вещество распределено в мелкораздробленном состоянии в среде другого, называются дисперсными. Раздробленное (распределенное вещество) называется дисперсной фазой, а среда, в которой распределена дисперсная фаза – дисперсионной средой.Дисперсные системы с размером частиц дисперсной фазы от 1 до 100 нм называются коллоидными растворамиили золями.

Дисперсная фаза в коллоидном растворе (или золе) представлена коллоидными частицами, в состав которых входят ядро, зарядообразующие ионы и противоионы. Зарядообразующие ионы могут быть положительно или отрицательно заряженными, поэтому и коллоидные частицы имеют либо положительный, либо отрицательный заряд. Заряженные коллоидные частицы притягивают к себе молекулы Н2О из дисперсионной среды; так создается гидратная оболочка, окружающая коллоидную частицу.

Примерный состав коллоидных частиц золей Sb2S3 и Fe(OH)3 можно выразить следующими формулами:

x- ;

3x+.

Противоионы Н+ или Cl-, которые входят в состав коллоидных частиц, называют связанными. Свободные противоионы остаются в дисперсионной среде.

Коллоидную частицу и эквивалентную ей часть дисперсионной среды (гидратированных свободных противоионов) называют мицеллой. Мицеллу считают структурной единицей коллоидного раствора. Формулы

{x−+ xH+·zH2O},

{3x+ + 3xCl−·zH2O}0

выражают примерный состав мицелл золей сульфида сурьмы и гидроксида
железа.


Коллоидная дисперсность вещества является промежуточной между группой дисперсности, характерной для взвеси и молекулярной, характерной для истинных растворов. Поэтому коллоидные растворы получают либо из истинных растворов путем укрупнения частиц молекулярной дисперсности до определенного предела (максимум до 100 нм), либо из взвеси путем дробления грубодисперсных частиц также до определенного предела (минимум до 1 нм). В этой связи различают конденсационные методы (укрупнение частиц) и метод диспергирования(дробление частиц).

Конденсация частиц молекулярной дисперсности может происходить в процессе гидролиза солей некоторых поливалентных металлов, например, FeCl3. Гидролиз иона Fe3+ протекает по ступеням:

Fe3+ + H2O = FeOH2+ + H+

FeOH2+ + H2O = Fe(OH)2+ + H+

Fe(OH)2+ + H2O = Fe(OH)3 + H+.

Гидроксид железа Fe(OH)3 не выпадает в осадок, т.к. степень гидролиза FeCl3 по третьей ступени мала.

Зарядообразующими ионами в процессе образования золя могут быть Fe3+, FeOH2+ , Fe(OH)2+ , а противоионами − Cl− .

Примером получения золей методом диспергирования может служить получение коллоидного раствора Fe(OH)3 путем химического дробления осадка гидроксида железа (III), называемого пептизацией. Пептизатором может быть электролит с одноименным ионом, входящим в состав осадка, например, FeCl3.

Добавление пептизатора к небольшому количеству осадка в водной среде приводит к тому, что ионы Fe3+ проникают в глубь осадка и разрыхляют его, постепенно дробя до коллоидной дисперсности. Дробление называют химическим потому, что ионы непросто проникают в осадок, а, взаимодействуя с его частицами, образуют дисперсную фазу положительного заряда. Ионы Fe3+ являются зарядообразующими в составе коллоидных частиц получающегося золя, а ионы Cl− противоионами.

Коллоидные растворы обладают специфическими оптическими, кинетическими и электрическими свойствами (специфика связана с размерами и зарядом коллоидных частиц) и характеризуются высокой кинетической и агрегативной устойчивостью.

Устойчивость коллоидного раствора можно нарушить. Потеря агрегативной устойчивости золя приводит к укрупнению частиц дисперсной фазы, их слипанию. Этот процесс называют коагуляцией. Коагуляция вызывает нарушение кинетической устойчивости системы, которая приводит к образованию осадка (коагулята). Этот процесс называют седиментацией.

Примерный состав коагулята золей сульфида сурьмы и гидроксида железа выражают формулами:

Выполнение работы

Опыт 1. Получение золя гидроксида железа (III) методом конденсации

Пробирку заполнить водой (примерно до половины ее объема) и поставить в горячую водяную баню. Через 5–7 минут внести в пробирку 2–3 капли концентрированного раствора FeCl3. Наблюдать образование краснооранжевого золя Fe(OH)3. Раствор сохранить для опыта 3.

Требование к результатам опыта

Указать состав ядра коллоидной частицы полученного золя, состав коллоидной частицы, состав мицеллы.

Опыт 2. Получение золя гидроксида железа (III) методом диспергирования осадка Fe(OH)3

В стакан объемом 50 мл налить 25 мл воды и добавить 10 капель 20 %-го раствора хлорида железа FeCl3. Перемешать содержимое стакана и после этого добавить по каплям раствор гидроксида аммония NH4OH до полного осаждения гидроксида Fe(OH)3.

После того как осадок уплотнится на дне стакана, осторожно слить с него избыток раствора. Осадок промыть 2–3 раза, добавляя к нему небольшие порции воды и сливая эту воду после того, как между ними и осадком четко обозначится граница раздела.

К осадку гидроксида железа (III) прилить 25 мл H2O и 3 капли 20 %-го раствора FeCl3. Смесь хорошо перемешать. Для ускорения процесса пептизации нагреть раствор на водяной бане. Прекратить нагревание, когда раствор приобретет устойчивую краснооранжевую окраску.

Требование к результатам опыта

Составить схему строения мицеллы золя гидроксида железа (III) в растворе хлорида железа FeCl3.

Опыт 3. Коагуляция золя гидроксида железа электролитами

Разлить в три пробирки золь гидроксида железа, полученный в опыте 1. По каплям прибавить в первую пробирку NaCl , во вторую – Na2SO4 , в третью – Na2HPO4. Считать число капель до изменения вида раствора (появления мути и осадка).

Требования к результатам опыта

1. Написать формулу мицеллы золя гидроксида железа.

2. Объяснить влияние заряда коагулирующего иона на время, проходящее до начала коагуляции.

Примеры решения задач

Пример 10.1. Золь иодида серебра получен при добавлении к раствору AgNO3 избытка KI. Определить заряд частиц полученного золя и написать формулу его мицеллы.

Решение. При смешивании растворов AgNO3 и KI протекает реакция

AgNO3 + KI (изб.) = AgI + KNO3.

Ядро коллоидной частицы золя иодида серебра состоит из агрегата молекул (mAgI) и зарядообразующих ионов I‾, которые находятся в растворе в избытке и обеспечивают коллоидным частицам отрицательный заряд. Противоионами являются гидратированные ионы калия. Формула мицеллы иодида серебра имеет вид {x− + xК+∙zH2O}0.

Пример 10.2.Золь кремневой кислоты был получен при взаимодействии растворов K2SiO3 и HCl. Написать формулу мицеллы золя и определить, какой из электролитов был взят в избытке, если противоионы в электрическом поле движутся к катоду.

Решение. Образование золя кремневой кислоты происходит по реакции

K2SiO3 + 2HCl = H2SiO3 + 2KCl.

Чтобы двигаться к катоду (отрицательному электроду) противоионы должны иметь положительный заряд, а коллоидные частицы золя должны быть заряжены отрицательно. На электронейтральном агрегате частиц (mH2SiO3) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы HSiO3‾, которые образуются в результате гидролиза соли K2SiO3:

K2SiO3 + H2O KHSiO3 + KOH или в ионной форме

SiO32− + H2O HSiO3‾ + OH‾.

Ионы HSiO3‾, адсорбируясь на поверхности частиц золя кремниевой кислоты, сообщают им отрицательный заряд. Противоионами являются гидратированные ионы водорода H+. Формула мицеллы золя кремневой кислоты

{x− + xH+∙zH2O}.

Так как коллоидные частицы золя кремневой кислоты заряжены отрицательно за счет ионов HSiO3‾, то, следовательно, в избытке был взят K2SiO3.

Пример 10.3. Какого из веществ, K2SO4 или KCl, потребуется меньше, чтобы вызвать коагуляцию коллоидного раствора гидроксида железа (II), полученного по реакции FeCl2 + 2NaOH = Fe(OH)2 + 2NaCl?

Решение. Из формулы коллоидной частицы золя гидроксида железа (II) 2x+ видно, что частицы золя имеют положительный заряд. Коагуляцию золя вызывает тот из ионов прибавленного электролита, заряд которого противоположен заряду коллоидной частицы. В данной задаче – это ионы SO42− и Cl‾. Коагулирующая способность иона определяется его зарядом – чем больше заряд иона, тем больше его коагулирующая способность. Заряд иона SO42− больше заряда иона Cl‾, поэтому, чтобы вызвать коагуляцию коллоидного раствора гидроксида железа (II), раствора K2SO4 потребуется меньше, чем раствора KCl.

Пример 10.4. Составить схему строения мицеллы золя гидроксида меди (II) в растворе хлорида меди.

Решение. В состав мицеллы гидроксида меди входят: агрегат молекул (mCu(OH)2), адсорбированный слой, состоящий из зарядообразующих ионов меди Cu2+ и гидратированных противоионов хлора, и диффузный слой гидратированных противоионов хлора. Схема строения мицеллы гидроксида меди

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *