Физический смысл потенциала

Вещественное значение электрического поля

Учёные длительное время изучали секрет электроэнергии. Главная награда в ее исследовании дана Эрстеду. Его основное открытие — впервые экспериментально установлена связь между электрическими и магнитными явлениями в 1819—1820 гг.

Стало ясно, что колебания предполагают суперпозицию изменяющихся во времени электрических и магнитных полей. Вектор магнитной интенсивности перпендикулярен электрическому вектору, связанному через длинную среду (некоторая физическая величина). Электростатическое воздействие — это действие через поле.

Особенности воздействия:

  • Каждый электрический заряд создаёт вокруг себя электростатическое поле.
  • Электрополем называется пространство, в котором действуют силы напряжения.
  • Величины, характеризующие поле в этой точке, — это интенсивность и потенциал.

Напряжённостью электростатического явления в этой точке называется отношение электросилы, действующей на помещённый в этой точке пробный заряд (положительный) к значению этого заряда:

  • E =F /q (над E и F вектор).
  • Единица напряжённости электростатического поля — 1 N/C.

Напряжённость электрополя в этой точке всегда имеет отдачу в соответствии с направлением силы, действующей на положительный пробный заряд.

Значение напряжённости электростатического поля на расстоянии R от источника Q может обозначаться простой формулой: E=k |Q|/R2.

Для графического представления поля используются линии — кривые, для которых вектор напряжённости в каждой точке имеет касательную часть. Поле со сферической симметрией называется центральным. Если линии расположены параллельно друг другу, а интенсивность имеет в каждой точке одинаковое значение, то поле называется однородным.

Разность потенциалов в физике в данный момент — это отношение энергии точечного положительного пробного груза, помещённого в этой точке к значению этого заряда: V=Ep/q.

Единицей измерения потенциала точки электрического поля является 1 В (вольт).

Потенциал электрического поля, формула на расстоянии R от источника Q можно рассчитать: V=k Q/r.

Заряд вокруг объекта

Конечно, можно говорить о поле, если есть какой-либо его источник. Каждое электрическое тело создаёт вокруг себя градиент потенциала электрического поля. По сравнению с гравитационными полями, есть важное отличие:

  • Гравитационные силы являются силами притяжения и могут измеряться.
  • Силы электричества могут быть как силами притяжения, так и отталкивания.

Известно, что линии поля относятся к векторам силы, действующим на тело в этой точке. Учёные сошлись во мнении, что стрелки линии поля будут выставлять обратный вектор силы, действующей на отрицательный заряд. Следовательно, силовые линии «выходят» из зарядов положительных и «бегут» к отрицательным энергетическим зарядам.

Напряжённость электрополя

В электрическом поле, так же как и в гравитационном, возникает понятие напряжённости. Это говорит о том, какая сила будет действовать, а известно, что эта сила зависит от источника и от расстояния. Именно интенсивность — характеристика этого поля, которое можно зарядить. По определению, напряжённость электрополя — это отношение силы, действующей на его значение.

Если поле не вызвано одним источником, а, например, двумя положительными зарядами, то для вычисления интенсивности в этой точке пространства есть смысл применить принцип суперпозиции.

Например, есть данные центрального поля, создаваемые зарядом Q. Следует разместить на расстоянии R1 пробный заряд q. Делается работа по перемещению этого испытательного заряда на расстояние R2 от источника поля.

Для того чтобы система заряда двигалась с одинаковой скоростью, нужно постоянно действовать на него с усилием, уравновешивающем величину Куломба. Но вместе с изменением расстояния от источника эта сила меняется обратно пропорционально квадрату расстояния. Использовать нужно среднюю величину, действующую на пробный заряд.

Чтобы определить, является ли работа положительной или отрицательной, нужно подумать, каков угол между вектором приложенного усилия и вектором перемещения. Если пробный заряд притягивается источником поля, и работа, которую выполняют, перемещает этот заряд ближе к источнику, тогда нужно сбалансировать притяжение.

Одним словом, прилагают усилие, которое создаёт с вектором смещение на угол 180°. Если cos (α)= -1, то работа отрицательная. Но если источник имеет взаимодействие с грузом так, чтобы уравновесить силу, параллельную цепи смещения, так что условие α=0°, т. е. cos (α) = 1 — работа положительная.

Потенциальная энергия

Вычисляя потенциальную энергию испытательного заряда в этой точке поля, используют свойство, при котором разница потенциальной энергии в двух точках равна работе, выполняемой при перемещении этого значения из одной точки в другую (то же самое делали, включая энергию в гравитационном поле).

Для того чтобы вычислить потенциальную энергию в этой точке, нужно переместить пробный заряд в место, где потенциал равен нулю. Такое место находится в точке, бесконечно отдалённой от источника. Положительный или отрицательный знак потенциала выбирают в зависимости от того, отталкивают груз с источником или притягивают. Если заряд источника является отрицательным, то нахождение электростатического потенциала является таким же. Когда источник является положительным, потенциал — тоже.

Эквипотенциальные поверхности

Если предположить, что источником электрополя является точечно заряженная частица (т. е. поле центральное), из этого следует, что все точки пространства, которые находятся от него одинаково далеко, имеют равный потенциал. В пространстве совокупность таких точек образует поверхность шара, а заряд-источник находится в центре сферы.

Однако, если электрополе не имеет централизованного характера, всё равно можно назначить такие поверхности, что пробный заряд, размещённый в любой точке этой поверхности, будет иметь тот же потенциал. Например, в случае однородного поля такой поверхностью является любая плоскость, перпендикулярная линии поля.

Диэлектрики в электростатике

Кроме того, у направляющих есть ещё одна группа тел — это диэлектрики. Для начала необходимо уточнить разницу между диэлектриком и проводником. Проводники — это тела, в которых заряды могут свободно перемещаться. Примером проводника является медный провод. Если положить на него груз, а затем дотронуться до него рукой, то этот груз будет «всплывать» из проводника и, следовательно, разгрузит его.

Но если положительно электрифицировать стекло, которое является диэлектриком, то прикосновение через руку не приведёт к его разрядке. Электроны от конечности будут течь только в точке контакта, но это стекло будет по-прежнему наэлектризовано в местах, где к нему прикасаются.

Электроны в диэлектрике не могут свободно двигаться. Они ограничены атомами и молекулами, которые не могут покинуть. Но если поместить диэлектрик в поле разрядов между положительным и отрицательным зарядом, это расположение электронов и атомных ядер изменится. Эти частицы ведут себя как диполи. Такая позиция показывает все молекулы в диэлектрике.

Образуется цепочка диполей с зарядами, положительными с одной стороны, и отрицательными — с другой. Это явление называется диэлектрической поляризацией. Поляризованный диэлектрик создаёт своё поле, внутреннее, и у него вектор напряжённости всегда направлен противоположно полю, в котором расположен диэлектрик. Таким образом, вред от аварий при напряжении поля уменьшается.

Электрическое поле удобно представлять графически с помощью силовых линий.

Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном (Силовые линии электростатических полей точечных зарядов.).

Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).

Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).
Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.
Силовые линии электростатических полей двух точечных зарядов.
Потенциал — энергетическая характеристика электрического поля. Потенциал — скалярная физическая величина, равная отношению потенциальной энергии, которой облает электрический заряд в данной точке электрического поля, к величине этого заряда.
Потенциал показывает какой потенциальной энергией будет обладать единичный положительный заряд, помещенный в данную точку электрического поля. φ = W / q
где φ — потенциал в данной точке поля, W- потенциальная энергия заряда в данной точке поля.
За единицу измерения потенциала в системе СИ принимают = В (1В = 1Дж/Кл )
За единицу потенциала принимают потенциал в такой точке, для перемещения в которую из бесконечности электрического заряда 1 Кл, требуется совершить работу, равную 1 Дж.
Рассматривая электрическое поле, созданное системой зарядов, следует для определения потенциала поля использовать принцип суперпозиции:
Потенциал электрического поля системы зарядов в данной точке пространства равен алгебраической сумме потенциалов электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:

Вектор напряженности в данной точке поля всегда направлен в область уменьшения потенциала. Воображаемая поверхность, во всех точках которой потенциал принимает одинаковые значения, называется эквипотенциальной поверхностью. При перемещении электрического заряда от точки к точке вдоль эквипотенциальной поверхности энергия его не меняется. Эквипотенциальных поверхностей для заданного электростатического поля может быть построено бесконечное множество.
Вектор напряженности в каждой точке поля всегда перпендикулярен к эквипотенциальной поверхности, проведенной через данную точку поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *