Индуктивное сопротивление трансформатора

Расчетные сопротивления трансформаторов

Полное сопротивление двухобмоточных трансформаторов вычисляется по выражению:

Zт = Uk·Uн2/100·Sн, (25)

где Uk – напряжение короткого замыкания, %; Uн – номинальное напряжение трансформатора, кВ; Sн – номинальная мощность, MВ·А.

Активное сопротивление определяется по потерям короткого замыкания в трансформаторе:

Rт = Pk·Uн2/Sн2, (26)

где Pk – потери короткого замыкания, Вт.

В выражениях (25) и (26) в качестве Uн можно подставить номинальное напряжение любой обмотки трансформатора. Сопротивление трансформатора будет приведено к тому напряжению, которое подставляется в выражения (25) или (26).

Индуктивное сопротивление трансформатора определяется по выражению:

Xт = .

Все необходимые данные указываются в каталогах и паспортах трансформаторов.

При расчетах необходимо иметь в виду, что все параметры трансформаторов имеют определенные разбросы. Например, действительная величина Uk трансформатора может отличаться от каталожной величины для этого трансформатора на ±10 %; действительные потери короткого замыкания могут отличаться на ±10 %.

Поэтому при расчетах токов КЗ следует пользоваться действительными данными, указанными в технической документации. Пользоваться каталожными данными можно только при проектировании, когда действительные данные неизвестны.

Схема замещения трехобмоточного трансформатора приведена на рис. 9. Для таких трансформаторов указывается три величины Uк для каждой пары обмоток: высшего-среднего (ВС), высшего-низшего (ВН) и среднего-низшего (СН).

Сопротивления лучей эквивалентной звезды сопротивлений трехобмоточного трансформатора определяются из системы уравнений:

Uкв = 0,5(Uкв-с + Uкв-н – Uкс-н);

Uкс = 0,5(Uкс-н + Uкв-с – Uкв-н); (27)

Uкн = 0,5(Uкв-н + Uкс-н – Uкв-с).

Определив Uкв, Uкс, Uкн по выражению (25), находят полные сопротивления лучей звезды в Омах.

Рис. 9. Исходная схема и схема замещения
трехобмоточного трансформатора

Активное сопротивление большинства современных трехобмоточных трансформаторов достаточно большой мощности настолько мало, что не учитывается, а полные сопротивления считаются чисто индуктивными. Если требуется определить активные сопротивления трехобмоточного трансформатора, то следует учитывать, что указываемые в каталогах значения потерь короткого замыкания относятся к наиболее тяжелому случаю: обмотка высшего напряжения и одна из обмоток среднего или низшего напряжения загружены полностью, вторая обмотка среднего или низшего напряжения находится без нагрузки.


Трехобмоточные трансформаторы выполняются с мощностями среднего или низшего напряжения обмоток, равными 100 %, или 67 % мощности первичной обмотки. Для трансформаторов с мощностью вторичной обмотки среднего или низшего напряжения, равной 100 % мощности обмотки высшего напряжения, активное сопротивление определяется по выражению:

R100 = Pк· Uн2/2Sн. (28)

Сопротивление обмотки, мощность которой равна 67 % мощности обмотки высшего напряжения, определяется по величине R100:

R67 = 1,5·R100. (29)

Для питания крупных потребителей (сети крупных городов и промышленных предприятии) применяются трансформаторы с расщепленной обмоткой низшего напряжения. У таких трансформаторов имеются две одинаковые обмотки низшего напряжения с одинаковой схемой соединений и одинаковой мощностью каждой обмотки, равной 50 % мощности обмотки высшего напряжения. При расчете сопротивлений таких трансформаторов следует учитывать, что величина Uк для них указывается для мощности каждой обмотки низшего напряжения.

Практически все современные трансформаторы имеют ответвления от обмоток для регулирования напряжения. В большинстве случаев изменение сопротивления трансформатора при регулировании напряжения, а следовательно, и изменение тока КЗ из-за этого не учитывается. Но в ряде случаев эти изменения приходится учитывать и возникает вопрос о вычислении сопротивления трансформатора при изменении числа витков его обмоток. У большинства трансформаторов распределительной сети ответвления для регулирования напряжения выполняются на стороне обмотки высшего напряжения. В соответствии с требуется, чтобы все трансформаторы допускали длительную работу при напряжении питания, превышающем номинальное напряжение данного ответвления не более чем на 5 % при номинальной нагрузке и 10 % кратковременно (до 6 часов в сутки) или длительно при нагрузке 25 % номинальной. Для трансформаторов распределительных сетей с регулированием типов ПБВ и РПН с достаточной для практики точностью сопротивление трансформаторов для любого положения переключателя ответвлений Zтр можно определить по формуле:


Zтр = Zтн (1 ± ∆N)2, (30)

где Zтн – сопротивление трансформатора, определенное по выражению (25) для номинального напряжения; N – количество ответвлений; ∆ – изменение напряжения при переводе переключателя в одно следующее положение, ОЕ.

Выражение (30) выводится из основной формулы (25), если принять, что величина Uк, выраженная в процентах номинального напряжения, сохраняется неизменной. Следует отметить, что величина Uк при изменении числа витков остается постоянной не для всех конструкций, поэтому для трансформаторов мощностью 10 МВ·А и более в паспорте указываются три величены Uк – для номинального напряжения и для двух крайних ответвлений.

В соответствии с для трансформаторов распределительных сетей предусмариваются два основных предела регулирования: для регулирования типа ПБВ – обычно ±2х2,5 %; для регулирования типа РПН у трансформаторов 25…630 кВ·А, 6…35 кВ ±6х1,67 % = ±10 %. Для трансформаторов большой мощности и более высоких напряжений пределы регулирования доводят до ±16 %.

Большинство трансформаторов в распределительных сетях имеет пределы регулирования типа ПБВ ±2х2,5 %. Сопротивление таких трансформаторов, определенное по выражению (31), будет изменяться в пределах

Zтр = Zтн (1 ± 0,05)2 = (1,1…0,91) Zтн.

При неизменном напряжении питания, равном номинальному напряжению основного ответвления Uн и питания от системы бесконечной мощности, ток трехфазного КЗ на выводах низшего напряжения будет изменяться в следующих пределах:

= Uн/((1,1…0,91) Zтн) = (0,91…1,1) Uн/Zтн.

При регулировании типа РПН в пределах ±10 % сопротивление трансформатора будет изменяться в пределах:

Zтр = Zтн (1 ± 0,1)2 = (1,21…0,81) Zтн,

а ток – в пределах

= Uн/((1,21…0,81)Zтн) = (0,825…1,23)Uн/Zтн.

Допускается работа трансформаторов при напряжении на его вводах, на 10 % превышающем номинальное напряжение.

Значения токов КЗ (за единицу принят ток КЗ при номинальном напряжении Uн) при различных напряжениях питания Uр и различных положениях переключателя ответвлений следующие:

За расчетное напряжение питания Uр принимается вторичное напряжение трансформаторов, питающих распределительную сеть. Для современных трансформаторов это – 38,5; 11 и 6,6 кВ, что составляет 1,1 номинального напряжения сетевых трансформаторов 35; 10 и 6 кВ. Следовательно, расчетные условия (расчетное напряжение, равное 1,1 номинального напряжения сетевых трансформаторов и номинальное сопротивление) соответствует среднему значению тока КЗ. При установке переключателей ответвления при регулировании ПБВ в положения ±5 % токи КЗ отличаются всего на 5 % от расчетного, что вполне допустимо.

При регулировании типа РПН в пределах ±10 % возможные отклонения действительного тока от расчетного больше. Но трансформаторы с РПН имеют автоматическое управление, и отклонение действительного напряжения питания Uр от номинального напряжения Uрн ответвления не превосходит одной ступени регулирования или 1,67 %. В этом случае при положении переключателя ответвлений (±10 %) ток будет равен:

= ((1 ± 0,0167) 0,9Uр)/(0,825 Zтн) = (1,1…1,07)Uр/Zтн,

или (0,99…0,96) Uрн/Zтн.

Следовательно, принятые расчетные условия обеспечивают определение расчетного тока КЗ при любых положениях ответвлений и питании от ЭЭС бесконечной мощности с точностью ±(5-10) %, что вполне достаточно. Действительные значения отклонений будут еще меньше, так как последовательно с сопротивлением трансформатора будет включено сопротивление линии распределительной сети.

Для трансформаторов с регулированием РПН в пределах ±16 % применяется автоматическое регулирование напряжения. Вопрос об учете изменения сопротивления трансформаторов решается в зависимости от местных условий, в основном от пределов действительного колебания напряжения.

Во многих случаях при определении тока КЗ на выводах трансформатора можно пренебречь не только сопротивлением ЭЭС, но и сопротивлением питающей сети. В этом случае расчетное уравнение принимает вид:

= U/( ·Zт) = U·Sн/ ·10·Uk·Uн2 = Iн/Uk ,

где Iн – номинальный ток трансформатора, А.

Таким приближенным расчетом удобно пользоваться для расчета токов КЗ в сетях 0,4 кВ.

Решение

Активные сопротивления трансформаторов равны:

R25 = 600·102/252 = 96 Ом; R400 = 5500·102/4002 = 3,44 Ом.

Полные сопротивления:

Z25 = 10·4,5 102/25 = 180 Ом,

Z400 = 10·4,5·102/400 = 11,25 Ом.

Индуктивные сопротивления:

X25 = = 152,3 Ом; X400 = = 10,71 Ом.

Если пренебречь сопротивлением сети, то ток трехфазного КЗ на выводах 0,4 кВ:

= 11000/ ·180 = 35,32 А, = 11000/ ·11,25 = 565,2 А.

Если трансформаторы подключены к кабельной линии, то токи КЗ:

= 11000/ · =

= 11000/ ·183,86 = 34,58 А,

= 11000/ · =

= 11000/ ·14,8 = 429,6 А.

Если трансформаторы подключены к воздушной линии с алюминиевыми проводами, то токи КЗ:

= 11000/ · =

= 11000/ ·185 = 34,37 А,

= 11000/ · =

= 11000/ ·16,04 = 396,4 А.

Те же вычисления выполняются по уравнению (2) для кабельной линии:

Zрс = 3,132 Ом; = 11000/ ·(3,132 + 180) = 34,72 А,

= 11000/ ·(3,132 + 11,25) = 442,11А.

На основании результатов расчета примера 6 можно сделать следующие выводы:

а) для трансформаторов очень малой мощности расчеты всеми способами (с учетом Zрс, активных сопротивлений, по полному сопротивлению) дают практически одинаковые результаты;

б) для трансформаторов большой мощности расчет без учета Zрс, недопустим;

в) в общем случае, поскольку численные соотношения активных, индуктивных и полных сопротивлений трансформаторов и линий весьма различны для разных случаев, все расчеты следует выполнять по выражению (7).

Решение

По формулам (25)

Uкв = 0,5· (10,5 + 17 – 6) = 10,75 %,

Uкс = 0,5· (10,5 + 6 – 17) = –0,25 %,

Uкн = 0,5· (17 + 6 – 10,5) = 6,25 %.

По выражению (25)

Zв = 10·10,75·1152/16000 = 88,85 Ом,

Zс = 10· (–0,25) ·1152/16000 = –2,066 Ом,

Zн = 10·6,25·1152/16000 = 51,66Ом.

Важно обратить внимание на то, что одно из сопротивлений лучей эквивалентной звезды оказалось отрицательным, что вызвано принятыми в численными значениями Uk между разными парами обмоток трансформатора.

Все сопротивления отнесены к напряжению 115 кВ.

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

Рис. 1. Схема, иллюстрирующая рассеивание магнитных потоков

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

Рис. 2. Устройство трансформатора

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL = ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа. Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали. С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Рис. 3. Схема режима холостого хода

Формула, применяемая для расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном / 100* Uв ном2 Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Отсюда находим:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк р ≈ Uк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

3. РАСЧЕТЫ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ ЗА ТРАНСФОРМАТОРАМИ

Категория: М.А. Шабад «Релейная защита трансформаторов»

Особенности расчетов токов КЗ. Для выбора ти­пов и параметров срабатывания устройств защиты трансформаторов необходимо определить максималь­ное и минимальное значение токов при КЗ на выво­дах НН понижающего трансформатора, или, как чаще говорят, при КЗ за трансформатором.

Максимальное значение тока соответствует трехфазному металлическому КЗ за трансформато­ром. Ток трехфазного КЗ рассчитывается при макси­мальном режиме работы питающей энергосистемы (электросети), при котором включено максимально возможное число генераторов, питающих линий и трансформаторов. Эквивалентное электрическое со­противление энергосистемы (электросети) до места подключения рассматриваемого трансформатора при этом режиме имеет минимальное значение, но обозна­чается Zmax или Xmax, что подразумевает максимальный режим работы энергосистемы. При таком режиме ток трехфазного КЗ на выводах ВН трансформатора и мощность КЗ имеют максимальные значения. При значительном числе электродвигателей в прилегаю­щей сети ВН учитывается подпитка места КЗ элек­тродвигателями в течение времени действия защит трансформатора, не имеющих специального замедле­ния, т. е. в течение до 0,1 с. Максимальное значение тока КЗ за трансформатором учитывается для выбора тока срабатывания токовых отсечек, устанавливае­мых на стороне ВН трансформатора (§ 7), а также для выбора аппаратуры и кабелей питаемых элемен­тов стороны НН .

Минимальные значения токов при КЗ на сто­роне 0,4 кВ рассчитываются с учетом переходного активного сопротивления (электрической дуги) в ме­сте КЗ до 15 мОм . Для трансформаторов со схе­мой соединения обмоток ∆/Y практически рассчитывается минимальное значение тока только при фазном КЗ (считая, что при однофазном КЗ на землю ток в поврежденной фазе имеет такое же значение). Для трансформаторов со схемой соединения обмоток Y/Y рассчитываются токи как при трехфазном, так и при однофазном КЗ, поскольку они значительно от­личаются друг от друга и для их отключения должны устанавливаться разные защиты.

Для трансформаторов 10 кВ с низшим напряже­нием выше 1 кВ (3; 6; 10 кВ) со схемами соединения обмоток Y/∆, Y/Y, ∆/∆ минимальное значение тока рассчитывается при двухфазном металлическом КЗ за трансформатором.

Для всех типов понижающих трансформаторов ми­нимальные значения токов КЗ рассчитываются при минимальном режиме работы питающей энергоси­стемы (электросети), при котором включено мини­мальное реально возможное число генераторов, пи­тающих линий и трансформаторов. При этом эквива­лентное электрическое сопротивление энергосистемы (электросети) до места подключения рассматривае­мого трансформатора имеет максимальное значение. Однако это сопротивление принято обозначать Zminили Xmin, имея в виду минимальный режим работы питающей энергосистемы (электросети). По мини­мальным значениям токов КЗ определяются так назы­ваемые коэффициенты чувствительности для всех ти­пов защит трансформатора от внутренних и внешних КЗ (кроме газовой). Необходимые значения этих коэффициентов указаны в «Правилах» и в соответ­ствующих разделах этой книги.

Расчеты токов при КЗ за понижающими трансфор­маторами небольшой мощности (практически до 1,6 MB -А) производятся с учетом активной состав­ляющей полного сопротивления трансформатора. Токи намагничивания и токи нагрузки трансформато­ров при расчете токов КЗ не учитываются.

При расчетах токов КЗ за трансформаторами .10 (6) кВ считается, что напряжение питающей энер­госистемы на стороне ВН трансформатора остается неизменным в течение всего процесса КЗ. Это допу­щение объясняется тем, что распределительные сети 10 (6) кВ, как правило, электрически удалены от ге­нерирующих источников энергосистемы и КЗ в этих сетях, и тем более за трансформаторами 10 (6) кВ,

мало сказываются на работе электрических генерато­ров. По этой же причине вычисляется только периоди­ческая составляющая тока КЗ, а влияние апериодиче­ской составляющей тока КЗ учитывается при выборе параметров некоторых типов защиты путем введения повышающих коэффициентов.

Вычисление тока трехфазного КЗ по значению напряжения КЗ трансформатора. Наиболее просто максимальное значение тока (в амперах) трехфазного КЗ за трансформатором вычисляется по значению напряжения КЗ трансформатора (Uk):

где Uk — напряжение короткого замыкания из пас­порта (паспортной таблички) трансформатора, %; Iном.тр. — номинальный ток трансформатора на сто­роне ВН или НН из паспорта трансформатора, А;

р= 100Sном. tp/Sk (5)

— коэффициент, % (Sном. тр — номинальная мощность трансформатора из паспорта, MB-A; SK — мощ­ность трехфазного КЗ питающей энергосистемы в той точке, где подключен трансформатор, т. е. на его вы­водах ВН, задается энергоснабжающей организацией, MB-А); если мощность энергосистемы относительно велика («бесконечна»), то р = 0.

При подключении относительно маломощных транс­форматоров (менее 1 MB-А) вблизи мощных район­ных подстанций и подстанций глубокого ввода 110/10 кВ с трансформаторами мощностью более 10 MB-А влияние сопротивления энергосистемы на значение токов КЗ за трансформаторами снижается и им часто пренебрегают, считая мощность энергоси­стемы «бесконечной», а значение р в выражении (4) равным нулю.

Вычисление тока трехфазного КЗ по полному со­противлению трансформатора Zтр.Значения этого со­противления и его составляющих: активной Rтр. и ин­дуктивной Xтр. необходимо знать для составления так называемой схемы замещения, в которой своими со­противлениями представлены все элементы расчетной схемы питаемой сети НН. Схема замещения дает воз­можность вычислить значения токов КЗ не только на выводах НН трансформатора, но и в любой точке сети НН

Полное сопротивление трансформатора Zтр.(в омах) определяется по выражению

где Uк — напряжение КЗ, %; Sном.тр.— номинальная мощность трансформатора, MB -А; Uном.тр.— номи­нальное междуфазное напряжение трансформатора на той стороне ВН или НН, к которой приводится его сопротивление, кВ.

Активная составляющая полного сопротивления трансформатора Rтр.определяется по значению потерь мощности ∆P в его обмотках при номинальной на­грузке. В практических расчетах потери мощности в’ обмотках трансформатора принимают равными по­терям короткого замыкания при номинальном токе трансформатора: ∆Р = Pk. Активное сопротивление трансформатора (в омах) вычисляется по выражению

где Рк — потери короткого замыкания при номиналь­ном токе трансформатора, Вт; Uном.тр. и Sном.тр. — то же, что в выражении (6), но здесь мощность Sном.тр. выражается в киловольт-амперах (кВ-А). Значения рkприведены в соответствующих стандартах и спра­вочниках.

Индуктивное сопротивление (реактивная состав­ляющая полного сопротивления) трансформатора (в омах) вычисляется по выражению

где Zтр.— модуль полного сопротивления трансформа­тора, вычисленный по выражению (6); Rтр.— активная составляющая полного сопротивления трансформа­тора, вычисленная по выражению (7).

Значения сопротивлений стандартных трансфор­маторов общего назначения напряжением 10/0,4 кВ для вычисления токов трехфазного (и двухфазного) КЗ приведены в табл.2.

Как видно из таблицы, сопротивления, отнесенные к стороне НН с Uном.= 0,4 кВ и указанные для удоб­ства в миллиомах, меньше сопротивлений, отнесенныхк стороне ВН с Uном.=10 кВ и указанных в омах, в 625 раз, что соответствует выражению

где Nтр. — коэффициент трансформации трансформа­тора, равный для рассматриваемых трансформаторов 10/0,4 = 25.

Таблица 2. Сопротивления трансформаторов 10/0,4 кВ

Примечание. Указанные значения сопротивлений с до­статочной степенью точности можно использовать при расчетах токов трехфазных КЗ за трансформаторами 10 кВ со схемами соединений обмоток звезда — звезда Y/Y треугольник—звезда ∆/Y и звезда — зигзаг Y/Y.

Максимальное значение тока (в амперах) при трех­фазном металлическом КЗ за трансформатором, ко­торый подключен к энергосистеме бесконечной мощ­ности (,гс = 0), вычисляется по выражению

где Uср. — среднее значение междуфазного напряже­ния, принимаемое для расчетов токов КЗ в сетях 10 кВ равным 10500 В; Zтр.— полное сопротивление трансформатора, вычисленное по выражению (6); для трансформаторов 10 кВ берется из табл. 2.

Например, при трехфазном КЗ за трансформато­ром мощностью 0,4 MB-А максимальное значе­ние тока на стороне ВН может быть вычислено по выражению (9) без учета сопротивления питающей энергосистемы:

отнесенных к напряжению 10 кВ.

На стороне НН ток КЗ вычисляется также по вы­ражению (9), но с учетом того, что сопротивления, от­несенные к стороне 0,4 кВ, в табл. 2 указаны в миллиомах, а фазное напряжение этой сети Uф = 400/1,73 = 231 В:

Для сравнения по выражению (4) получаем такое же значение тока КЗ: Iк.мах = 100 • 578/4,5 = 12845 А или 12,85 кА, где номинальный ток транс­форматора на стороне НН равен 578 А.

Токи на стороне ВН и НН трансформаторов раз­личаются в Nтр. раз, где Nтр. — коэффициент транс­формации трансформатора, для трансформаторов 10/0,4 кВ значение Nтр. = 25. Для рассмотренного в примере трансформатора мощностью 0,4 MB-А от­ношение токов КЗ будет 12845/512 = 25.

Минимальное значение тока при трехфазном КЗ на выводах НН трансформатора через переходное активное сопротивление в месте КЗ Rпер. рассчиты­вается по выражению, аналогичному (9):

где Uср. — междуфазное среднее напряжение сети, В; Rси Xс — активная и индуктивная составляющие со­противления питающей энергосистемы (электросети) до вводов ВН трансформатора; Rтр. и Xтр. — активная и индуктивная составляющие сопротивления трансфор­матора (табл. 2); Rпер. — переходное активное сопро­тивление в месте КЗ, наибольшее принимаемое в рас­четах его значение равно 15 мОм, отнесенным к сто­роне 0,4 кВ.

Расчеты токов КЗ на стороне НН 0,4 кВ удобно выполнять в именованных единицах, от­нося значения всех сопротивлений к стороне 0,4 кВ и принимая фазное среднее напряжение этой сети равным 230 В. Сопротивления выра­жают в миллионах, значения токов КЗ полу­чают в килоамперах.

Например, для расчета тока трехфазного КЗ через переходное сопротивление Rпер.= 15 мОм на выводах НН трансформатора мощностью 0,4 MB-А заданы со­противления питающей энергосистемы до места под­ключения этого трансформатора к сети 10 кВ: Rс = 0,8 Ом и Xс = 0,62 Ом, отнесенных к напряжению 10 кВ. В первую очередь эти сопротивления должны быть приведены к стороне 0,4 кВ по выражению (8): Rс = 0,8 • 103/625 = 1,3 мОм; Xс= 0,62-103/625 = 1 мОм. Значения сопротивлений трансформатора принимаются по табл. 2.

Минимальное значение тока рассчитывается по выражению (10):

отнесенных к напряжению 0,4 кВ. За счет переходного сопротивления 15 мОм расчетное значение тока КЗ снизилось примерно в 1,5 раза по сравнению с макси­мальным значением тока КЗ, рассчитанным выше (12,85 кА). Учет сопротивления питающей энергоси­стемы существенного влияния на уменьшение тока КЗ в данном случае не оказал. Следует напомнить, что с ростом мощности трансформатора его сопротивле­ние уменьшается (табл. 2) и переходное активное со­противление в месте КЗ, принимаемое в расчетах равным 15 мОм, вызывает тем более существенное уменьшение значения тока КЗ, чем больше мощность трансформатора: например, для стандартного транс­форматора 0,63 МВ-А— примерно в 1,6 раза, 1 МВ-А — более чем в 2 раза, 1,6 МВ-А — более чем в 2,5 раза. Поэтому при использовании относительно крупных трансформаторов 10 (6)/0,4 кВ со схемой соединения обмоток Л/¥ некоторые организации до­пускают сниженные по сравнению с «Правилами» . Значения этих токов исполь­зуются для определения коэффициентов чувствитель­ности максимальной токовой защиты трансформатора в так называемых зонах резервирования. При значе­нии этих коэффициентов, превышающем 1,2, считает­ся, что максимальная токовая защита трансформатора обеспечивает дальнее резервирование питаемой сети, т. е. резервирует возможные отказы защитных устройств и коммутационных аппаратов отходящих элементов 0,4 кВ, не допускает длительного существо­вания не отключенного КЗ и тем самым спасает элек­троустановку от больших повреждений.

Вычисление токов при двухфазнщм КЗ за трансформатором. Специальные расчёты этих токов не производятся, а их значения принимаются примерно на 15% меньшими, чем ток трёхфазного КЗ. Минимальные значения токов при двухфазном КЗ используются для проверки чувствительности МТЗ на трансформаторах со схемой соединения обмоток Y/Y, а также всех защитных устройств от междуфазных КЗ на элементах 0,4кВ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *